¢

e —

\ —
A .'Cv.’-__\S)

Libyan Academy — Misurata
School of Applied Science and Engineering

Department of Information Technology

Application of Boltzmann Machine and other
Uninformed Searching Algorithms in solving

Artificial Intelligence Problems

Thesis Submitted to Department of Information Technology of
Master in Information Technology

Submitted by

Wafaa Abdallah Abed Alrahman

B.Sc. in Information Technology, Sirte University, 1999

Supervised by

Dr.Mohamed Almahdi Eshtawie

Misurata — Libya

May-2017

Lualad) LYY)80

anity Ajuae gy — Ayl LpapalCL Aasd (paayll 2 Al 2o cliy AWl U

Agalall LLYL (s IO cngll il 8 (31357022) 2 &8y cand claglaal) dyi
Application of Boltzmann Machine and) & 4 gixall Sl Hlaiy legle cajlaial)
other Uninformed Searching Algorithms in solving Artificial Intelligence
S ad A e deasl S JaL Q8 W) uls el dgaledl 40 Jal (- Problems
a1 ey dnldl Bl Y1 Leapla S L Jal Wpds 2 dsale il S (i
i) 5 Ran il o il lee 8 Apaled) Gl o Lals Raa il o il Adee 6 dualal)
Ulsie oS5y pe Go) 13 Gy ald adey 3 30 LS dplanal Jlel

O el i e dngall Al Ayl JolS Jeadl s el e

cs) Aasiaall dpalall dnjall Ca Gy 8 Loy Adllaal) 028 s

Mg Sl L e bl

... a8 gil)
... aoull

Acknowledgments

The work presented in this thesis would have been impossible without the

help of ALLAH and then many other persons whom I want to recognize here.

First of all, I would like to thank Dr.Mohamed Almahdi Eshtawie for being
my supervisor. Dr.Mohamed created an environment generously providing an
abundance of learning opportunities. His efforts have been manifold notably those
aimed at teaching me how to write up scientific research as reflected in this thesis
still any mistakes remaining are my own. His work on research forms the
foundation on which this research has been built during that process in constant
interest in research has led to an increased understanding of the strengths and

weaknesses of the algorithms.

I would like to thank the Head of Information Technology Department in
The Libyan Academy-Misurata for his support. In addition, the referees for

helpful comments that helped to improve the manuscript.

Finally, I want to thank my family and friends for their stimulating interest
in my research. Most important of all however has been the continuous support

and stimulation of my husband Dr.Emad and my daughter Shahed.

Contents

LISt OF TaADIES ..ttt ettt s A"
LISt Of FIGUIES ..nvtieeiiieeiteecte ettt e et e st e st e e sbte e sabeeesaneeenes VI
List Of TerminOlOZYccouveeiiuiiiiiiieiiieeeiee ettt ettt VIII
LSt Of SYMDBOIS....eiiiiiieiiieeee ettt e e st e e e b e s e eaaeeeneee X
ADSITACE ...ttt ettt et e st ettt e st e s e eas X1II
()1 E21 o115 g0 1 SRR PUPPRRURPRPPRN
INEEOAUCTION. ...ttt et sttt e st e bt esat e st e s e eaneenae
1.1, INErOQUCHION: ..ttt sttt et 6

L1.2. Scope of Study: e 7

1.3. Problem Statement: e 7

1.4. Problem Description: = i 8

1.5. Aim and ODJECtIVES: oo 9

1.6. Thesis Outline: oottt 9
CRAPLET TWO ettt ettt ettt e ettt e sttt e st e e sabt e e s bt e e sabeeesabeeenaseesnnseeas
Theoretical Back@round............cc.uiiiiiiiiiiiiiiieeee et e e
2.1, INErOAUCHION ...ttt ettt ettt e e st e e 12
2.1.1. Restricted Boltzmann Machine (RBMS):evvvvvvvevevvvennnnns 12

2.1.2. Message Passing Algorithms (MP):ccooeiiiiiiiiiiiniiieen. 14

1-Factor Graphs (FG): ...ooccoiiiiiiiieiee ettt 14

2-The Sum-Product algorithm:cccoeeeeeeieiiiieeeeiiieeeeieeee e 16

2.1.3. The Uninformed Searching Algorithms:cccceeevvveviveennnenn. 17

1.Breadth Frist Search (BFS):ccuioooiiiiieiiieeeecieee e eeiaee e 18

2.Depth First Search (DFS): ..ot 20

2.1.4. Sudoku Puzzle Problem:cooouuueiiiiieeiiiieee e 21

1.The specific Sudoku problem:ccccocoevcerveniicinvicniiniineeneene 22

2.Constraint Satisfaction Problems (CSPS):ccooueeeeeeveeeeeiiveeeeennen. 24

2.2. Related WOTKooviiiiiiiiiiceeceeeee et 25
CRAPLET TRICE ..eeeiiniiiiee ettt e e sttt e e sttt e e e s abaeeeseanteeeeennns
MEtROAOLOZY ...ttt ettt ettt e et e st e et e e s
3.1 INErOAUCTION: ..ttt ettt e 35

3.2. Sudoku Puzzles problem: e 35

3.3. Data Structures for Search Strategies: ., 36
3.3.1. Restricted Boltzmann Machines Strategy:.........ccccceevcueeenneenne. 36

3.3.2. Message Passing Strate@y:........ccoceeveemiercuienienieeneeereeneenneen 39

3.3.3. Breadth First Search Strategy:ccoooeeiiiiiniiiiniiiiiiieens 42

3.3.4. Depth First Search Strategy:c.cccocceevieriienierneenieereeneeeeen 46

L@ 112101 (o) W 200 1 R PSRTRPR
Results and DISCUSSION «....ccuueiiiiriiiiiiiiiieieeitcee ettt ettt sree s ea
4.1, INErOAUCTION: .ttt ettt e s 50

4.2. Numerical tesults: e 50

4.3. Algorithms Performance: = . 51
4.3.1. Restricted Boltzmann Machine Performance:c........ 51

4.3.2. Performance of Message Passing:ccccevcveeeviienvieencieeennenn. 52

4.3.3. Performance of Breadth First Search:............ccocccoiinnnnni. 54

4.3.4. Performance of Depth First Search:..........ccccceevviiiiiiiencinennnn. 55

4.4, DISCUSSION: ..eiiuiiieiitieeitee ettt ei et e e st e e sttt e e et e e sateesbbee ettt e sabteesabeeesabeeenareens 56

4.5. Evaluating problem-solving performance: ..., 57

4.6. DesCriptive StatiStICS: iieeiiiieeeeiiieee et ee e srre e e st e e e sreee s 63

4.6.1. Restricted Boltzmann Machine time solving:........ccccceceeeueenee. 63
4.6.2. Message Passing time SOlVINg:ccceevvveeniieeiieeniieeniieeenn 64
4.6.3. Breadth First Search time solving:.......ccccccoveeviinicniienicnnneene. 64
4.6.4. Depth First Search time SOIVING:cccocvveeviieeriieeieeeiieee, 65
4.7. Statistical AnalysiS: e 66

4.7.1. Cumulative distribution for Restricted Boltzmann Machine: ... 66

4.7.2. Cumulative distribution for Message Passing:cc.ccceeuee. 67

4.7.3. Cumulative distribution for Breadth First Search:.................... 68

4.7.4. Cumulative distribution for Depth First Search:....................... 69

CRAPLET FIVE...eiiiiiieiieeeee ettt
Conclusions and FUtUre WOTKc.coiiiiiiiiiiiiiiicceeecee e
5.1, CONCIUSION: .niiiiiiiieiiite ettt ettt et e ettt e et e e sbee e s beeesabeeeaas 71

5.2, Future WOrK: c..cooiiiii e 72
REFEIENCES. ...ttt st 73
The APPENAIX A...eoiiiniiiiieeee et e ettt e e et e e e sabte e e s e abbeeessnnbeeeeennneees 78
Boltzmann Source Codecooiiimiiiniiiiniieeieceeeeeeeeeeee e 78

Message passing SOUICE COAE........orvuiirmiriiiniiriiieneeerienee e 79

Breadth First Search Source code...........cooviiiiniiiiniiiiniiiiiiceieee, 81

Depth first search Source codeccoeviieriiieeriieeniiieeieeeieeeee e 82

Matlab Source codecooiiiiiiiiniiiiiiieeceeee e 85

The apPEeNdIX B...coooiiiiiiieee e e e e 87
The solutions for 17 clues Sudoku problems........c...cccceeviiriienieenneenne. 87

The solutions for 27 clues Sudoku problems...........cccoevveeriiieniieennnen. 97

List of Tables

Table 2.1: The properties of Breadth First Search 19
Table 2.2: The properties of Depth First Search. 20
Table 4.1: Comparison of Algorithms performance to Solve Sudoku puzzles ...ccceeeeee 50
Table 4.2: Algorithms performance for solving problem 59

List of Figures

Figure 1.1: Problem solving by graph searching

Figure 2.1 : Restricted Boltzmann Machines

Figure 2.2 : A factor graph

Figure 2.3: Breadth Frist SEarch...cccceececcccsssnecsssssnnecsssnsecsssnssecsssssssssssssssscsssnnes

Figure 2.4: Depth First Search

Figure 2. 5 : 9x9 Sudoku Puzzle grids

Figure 2.6 : An easy Sudoku Puzzle

Figure 2.7 : The solution to the Sudoku Puzzle in Figure 2.6 ...cccceeeeccccnnsecscennss

Figure 2.8 : Sudoku with Constraint Satisfaction

Figure 3.1: 10 Sudoku puzzles dataset text file

Figure 3.2: A single neuron in Sudoku grid

Figure 3.3: Flow chart for implemented RBM algorithm.ccceccereccccnssecscnnes

Figure 3.4: The factor graph of a 9 x 9 Sudoku solver

Figure 3.5: Flow chart for implemented MP algorithm.

Figure 3.6: First step searching using Breadth-First Search

Figure 3.7: Second step searching using Breadth-First Search

Figure 3.8 : Flow chart for implemented BFS algorithm

Figure 3.9: Flow chart for implemented DFS algorithm.

Figure 3.10: Second step searching using Depth-First Search

Figure 4.1: Time distributions restricted boltzmann machine.........c...cc...cc........
Figure 4.2: The histogram restricted boltzmann machineccoccccevueenne
Figure 4.3: Time distributions message passing algorithms............ccecceeerueenne.
Figure 4.4: The histogram message passing algorithms...........c.cccceeeveernieennenn.
Figure 4.5: Time distributions breadth first search...........ccceeoieeiniiiiiiniiiennnnn.
Figure 4.6: The histogram breadth first search...........cccccooceeiiniiiiininin,
Figure 4.7: Time distributions depth first search........c...cccceeveenviiiiinicnncnnne.
Figure 4.8: The histogram depth first searchc..ccoceiiiiniiiiiniinie

Figure 4.9: Aggregation time distributions of all algorithmscecceeneen.

Figure 4.10: Aggregation time distributions of three of the algorithms

Figure 4.11: A sample of 17 clues Sudoku puzzles with four results.................

VI

Figure 4.12: A sample of 17 clue Sudoku puzzles with one-failed results..................... 61
Figure 4.13: A sample of 17 clue Sudoku puzzles with two failed results..................... 62
Figure 4.14: The solving time for restricted boltzmann machine.............cccccoecerviennees 63
Figure 4.15: The solving time for message PasSiNg........ccccveeeueeerrieeeriieeeniieeenieeenieeennnes 64
Figure 4.16: The solving time for breadth first searchccocccocviiiiniinnnninn. 65
Figure 4.17: The solving time for depth first search...........cccccccevviiiriiiiniiiniieiiieeee, 65
Figure 4.18: Cumulative distribution for RBMccccccoiiiiiiiiiiiiiiieeieeceeee e 66
Figure 4.19: Cumulative distribution for MPcccccoiiiiiiiiiccen 67
Figure 4.20: Cumulative distribution for BES ..o, 68
Figure 4.21: Cumulative distribution for DFS.........c..ccccooiiiiiiiiiee 69

Vil

List of Terminology

Artificial intelligence (AI) is the intelligence exhibited by machines or software. It is
also the name of the academic field of study, which studies how to create

computers and computer software that are capable of intelligent behavior.

A search algorithm is an algorithm for finding an item with specified properties among

a collection of items, which coded into a computer program.

An algorithm is an effective method that can be expressed within a finite amount of
space and time and in a well-defined formal language for calculating a function.
Starting from an initial state and initial input (perhaps empty), the instructions
describe a computation that, when executed, proceeds through a finite number of

well-defined successive states.

An integrated development environment (IDE) is a software application that
provides comprehensive facilities to computer programmers for software
development. IDE normally consists of a source code editor, build automation

tools and a debugger. Most modern IDEs have an intelligent code completion.

A graph: is an ordered pair G = (V, E) comprising a set V of vertices, nodes or points

together with a set E of edges, arcs or lines,

A vertex: (plural vertices) or node is the fundamental unit of which graphs are formed.

An edge: is related with two vertices, and the relation is represented as an unordered

pair of the vertices with respect to the particular edge

Row: A horizontal group of 9 cells. Rows are numbered {1, 2...9} from top to bottom.

Column: A vertical group of 3 cells. Columns are numbered {1, 2...9} from left to

right.

Block: A group of 9 cells arranged in a 3x3 grid.

Vil

https://en.wikipedia.org/wiki/Field_of_study
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Collection_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Effective_method
https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Null_string
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Execution_%28computing%29
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Computer_programmer
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Source_code_editor
https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Ordered_pair
https://en.wikipedia.org/wiki/Set_%28mathematics%29

A group: is a collection of 9 cells organized as a either a row, column or a block.

Time Complexity: refers to the number of nodes generated during a search. Measured

using the “Big O” notation.

Space Complexity: refers to the maximum number of nodes stored in memory during a

search. Again measured in the “Big O notation.

Optimality: refers to the guarantee that an optimal (least-cost) solution can be found.

Completeness: refers to the guarantee that a solution can be found (if one exists).

Standard Deviation: is a number used to tell how measurements for a group are spread

out from the average (mean), or expected value.

Probability density function (PDF), or density of a continuous random variable, is a
function that describes the relative likelihood for this random variable to take on a

given value.

Numerical integration: is the approximate computation of integral using numerical

techniques.

A* algorithm: is an informed search algorithms, or best-first search, meaning that it
solves problems by searching among all possible paths to the solution (goal) for

the one that incurs the smallest cost (least distance travelled, shortest time, etc.),

http://mathworld.wolfram.com/Integral.html

List of Symbols

RBM= Restricted Boltzmann Machine.

MP= Message Passing.

FG= Factor Graph.

BP= Belief Propagation.

BFS= Breadth First Search.

DFS= Depth First Search.

CSPs= Constraint Satisfaction Problems.

b= the branching factor of a tree structure.

d= the depth of the answer in a tree structure.

m= the maximum depth of a tree structure.

L= the depth limit of a tree structure.

CDF= cumulative distribution function.

PDF= Probability density function.

A* = algorithm

gadlall

Oleiilss Al Aaayle Leiay Candl e lsd 5)8 Ay e Hale IS5 Auall o2a 305

Genl) (b il Baalsag sl ¢ Y1 Sanal) Baylsa M Aila) AL Ly A lsdg i)
23 aladin) el 13a b i Cus ¢ olihal) oA Jlae 3 JSLa Sy Jad ellyg Yl
Adiali dae)jld LS atu) sda e IS Al s 8 Sl bl S cullld)
22 Gp A5l el (Sar mabull o2d P (o Lghnpdal ladiy laell Bida bl Aaly iy 40
by Aale Bysay JSLEA Ja 8 Aeadine yhal) 038) Cung o iV 3 S Cun (e e ylsal)
Ools Sl da e 5,08 Laa Gaaald Gulele Ll &5 Aals 5y o lihaYl 2 1SY) Jlas

el 138) gl (3 il

N x N dsiias b 53l s syl alill e Jia 3l sS5a5m 33l pial il 1

@hl Grki culy @Al il @Sl I 9x9 Seage 3 disd Sl 1 8 S
S @kl el ly Auhall Al 8 oSe) Y @il Sl Rl se ik deadi)
sty el Sladl an lae Wi Jal) oL alll da e Leipaias SO Alla e loal)
Gligine i€ e iy @ lual plaily zg6 lly deddial) Aaphally Sall) Ja 40l e 4N
el 3l Ja e Al (K6 axe Jla Al Bre Astias JS5 e delagiul 2y g3 3l

sl dag Jas Al

dall 0y asady lele Juanid) gt Jilaal (ke gealiyy alasin) duhall DA L
Loy 4383 458 ey Shas) ddaill eha) M ddla) 2l ds o @hall o2 o JS B)0ieg
dall ey eal L) IS 3 alial) Juadl saiall Glesilyy Al o Ahal) ey alial) cjelal Cupa

Alaa Z8ES Juadly o)lae Caai] sl

Xl

Abstract

This research primarily concerned with the ability of searching algorithms
such as Restricted Boltzmann Machines, Message Passing, Breadth First Search
and Depth First Search to Solve problems in the area of artificial intelligence. In
this research, the different methods or algorithms will be used in tree graph form.
For each of these methods, the algorithm and the software code will be written
based on their rules and nature. Single Java code will be used for these different
methods so that a comparison between their effecincy can be accomplished. Since
these methods are applied for problem solving in general and in the area of
artificial intelligence in specific, Two parameters will be investigated i.e. solving

time and the ability to solve a problem.

In this research work, Sudoku puzzle that represents from mathematical
point of view an N x N matrix for which a solution is to be found. The 9x9
Sudoku puzzle is chosen in this research and will be converted to tree graph form
so that the above mentioned methods are proper to be applied. Hence each of
these different methods will deal with Sudoku puzzle in tree graph form and apply
its own procedure and basic rules together with Sudoku rules to find the correct
solution for the puzzle. For each method, solution path will be established which
means that the solution for the puzzle exiss. This right path will be retransferred
back to a complete matrix that contain the puzzle solution. In case the method was

not able to solve the puzzle, Failed message will be the result of processing.

The Matlab package will be used to analyze the numerical results and
describe the solving time and the unsolved puzzles to find which of the different
methods applied has the best performance. In addition, the Matlab will be used for
statistical analysis to get accurate comparison results between the different
methods. The results show that the Ristricted Boltezmann machine gave the best
result when referring to the statistical results obtained from the Matlab and has the

shortest solving time when referring to the java code results.

Wl

Chapter One

Introduction

1.1. Introduction:

Artificial Intelligence (Al) is the study and creation of computer systems
that can perceive reason and act. The primary aim of Al is to produce intelligent
machines. The intelligence should be exhibited by thinking, making decisions,
solving problems, more importantly by learning. Al is an interdisciplinary field
that requires knowledge in computer science, linguistics, psychology, biology,

philosophy and so on for serious research (Russell and Norving, 2010).

Al can be defined as the area of computer science that deals with the ways
in which computers can be made to perform cognitive functions ascribed to
humans. However, this definition does not say what functions are performed, to
what degree they are performed, or how functions are carried out. Graphs can be
electronically stored in different ways. However; the way of manipulating and the
nature of the graph structure directly affects the data structure used (Adedapo, et
al., 2015). Theoretically, one can distinguish between list and matrix structures
but in concrete applications, the best structure is often a combination of both. List
structures are often preferred for sparse graphs as they have smaller memory
requirements. Matrix structures on the other hand provide faster access for some

applications but can consume huge amounts of memory (Ferozuddin and Khidir ,

2011).

In tree structure, the path from initial state to the final or goal state describes
the graph connectivity. However; when searching a graph the connectivity path is
traced and examined. The set of possible states, together with operators defining
their connectivity constitute the search space. Applying a searching algorithm will
result in an output that implies the moving or traveling from the initial state to the
goal or final state that satisfies the aim of searching. In real life, search usually
results from a lack of knowledge (Rina and Robert, 2007). This means that lack of

the relation between the initial state and any of the goal or final state.

1.2. Scope of Study:

This study focuses on the application of searching algorithms in problem
solving hence the scope of study is concerned but not limited to the following

points:

v" Searching algorithms: There are several searching algorithms considered in this
research such as Breadth First Search Algorithms, Depth First Search
Algorithms and Message Passing Algorithms, and Boltzmann Machine
Algorithms used to solve problems.

v Code Optimization: Java code is optimized for all algorithms are implemented;
statistical analysis is applicable and the results are displayed in histograms using
Matlab package

v" Special Sudoku: There are several variations of Sudoku including different sizes
of the grid. This study deals with the study of ordinary Sudoku, which is 9x9
grid.

1.3. Problem Statement:

Problem solving in AI may be characterized as a systematic search through
a range of possible actions in order to reach some predefined goal or solution. In
Al problem, solving by search algorithms is quite common technique. The real art
of problem solving is in deciding the description of the states and the operators

(Russell and Norvig, 2010).

In this study different kinds of searching algorithms of artificial intelligence
are used for problem solving. Sudoku is considered as one of major problem
addressed by researcher (Cecilia and Luciana, 2013). Sudoku is one of the
interesting puzzles that gained popularity in late 1990s. It is not considered
confusing and complex and may be dealt with by pencil and eraser. People started
looking for tools, steps or methods to solve Sudoku using searching algorithms

(Baptiste and Jean , 2014).

1.4. Problem Description:

T
o
4
o
o
o
o
3
o

he Initial State

o
o
2
o
o
0
o
5

For solving problems by computer: flesh out the task and determine what
constitutes a solution. The problem is then represented in a language to compute
an output that is an answer given to a user or a sequence of actions to be carried
out in the environment (Russell and Norvig, 2010). The way problems are

described can be formulated as follows:

The Initial State: The state at which problem will start.

Successor function: Description of possible actions and their outcomes.

Goal Test: It determines if the given state is the goal state or not. For example in
chess, the goal is to reach a state called checkmate where the opponent’s king is
under attack and cannot escape.

Path Cost: A path cost is a function that assigns a numeric cost to each path
(seconds time). The problem solving agents choose a cost that reflects its own

performance measure, e.g. path distance between the cities as given in Figurel.l.

o

1

cormooo
ONOWaOOO
cooooo0o

cooo-ooO

0
o
o
4 o
1

Explored
nodes

Successor . \ ;
function . .

O OSSO O
Figure 1.1: Problem solving by graph searching

Unexplored nodes
€ 3 578

S 1 2

&

&

2 6 4
s -

4
3

Na W

7
1
]

ARNAHOWQY
W

AV DAHWR S

JuersoOWND
WaVYANDN-

VOW-aMRE

7 L]
1 S

@B

Primarily the focus is to measure and analyze search algorithms according
to their solving potential, and how well those algorithms are suited for
parallelizing. Hence applying uninformed searching algorithms, Message Passing

Algorithms and Boltzmann Machine to solving Sudoku puzzles as an example.

1.5. Aim and objectives:

This study is basically aimed at solving 9x9 Sudoku puzzle grid using
searching algorithms such as Restricted Boltzmann Machine and Message Passing
Algorithms, and Breadth First Search Algorithms, and Depth First Search
Algorithms and there are certain objectives that will be achieved from this

research which can be summarized as below:

1- Make an overview for the previous work in Al area.

2- Study and understand the four algorithms selected in this research, which are
the Restricted Boltzmann Machine, Breadth First Search, Depth First Search,
and Message Passing algorithm.

3- Develop the data structure appropriate with these algorithms (Tree graph
structure).

4- Choose the artificial intelligence case study, 9x9 Sudoku puzzle grid and the
way it can be represented to fit the data structure proposed.

5- Implement the selected algorithms to solve the Sudoku puzzle after developing
the software code for each of them.

6- Compare the results of each algorithm with others and make the

recommendation for the best.
1.6. Thesis Outline:

This research comes in five chapters therefore the report is organized as

described below:

e Chapter 1: ‘‘Introduction” presented the general introduction about the
research problem. In addition, it contains problem statement, field of study,
problem description, and goal of study.

e Chapter 2: ‘“‘“Theoretical Background” provides the literature review
about the research and basically the relevant and related recent works.

e Chapter 3: ‘“‘Methodology” this chapter presents the description of the

applied algorithms together with the Sudoku problem. Moreover, the way

the data structure is established and the software codes are written is also
elaborated.

e Chapter 4: ‘‘Results and discussion” in this chapter, the results
obtained regarding every searching algorithm is given. The numerical
results were presented followed by the algorithm performance. The results
obtained were discussed based on their performance from the solving time
and the ability to solve point of view.

e Chapter 5: ““Conclusions and Future Work™ presents the conclusions

drawn from the research and raises suggestions for future research.

10

Chapter Two

Theoretical Background

2.1. Introduction

This chapter describes theoretical foundation for this research. The main
focus is on describing Problem Solving. It is considered as one of the corner
stones of Al research within two distinguished sub-processes i.e. choosing a
knowledge representation and performing a search. The term knowledge
representation means including analysis conceptualization and formalization.
Well-chosen representation may considerably reduce the amount of search needed

to solve a problem (Russell and Norving, 2010).

In Al problem solving is basically a search; limited search strategies is an

essential aspect in this study:

2.1.1. Restricted Boltzmann Machine (RBMs):

A Boltzmann machine is a class of neural networks introduced already in
late 1980°s. They are based on statistical physics. In contrary to most other neural
network methods, Boltzmann Machines are probabilistic graphical models that

can be interpreted as stochastic neurons (Wolfgang Maass, 2014).

Restricted Boltzmann Machines are simplified versions of Boltzmann
machines; Figure 2.1 shows RBMs, where connections between the hidden
neurons (h) and the visible neurons (v) in the original Boltzmann, machines are
removed. Only the connections between the neurons in the visible layer and the
hidden layer remain (KyungHyun, et al., 2010). This simplification make learning
in RBMs tractable compared with Boltzmann machines, where it becomes soon
intractable due to the many connections except for small-scale toy problems

(Marylou, et al., 2015).

A Restricted Boltzmann Machine have attracted much attention as building
blocks for the multi-layer learning systems called deep belief networks, and
variants and extensions of RBMs have found applications in a wide range of

pattern recognition tasks For various supervised and unsupervised such as,

12

dimensionality reduction, Classification, collaborative filtering, and clustering

(Asja and Christian , 2014; Hugo and Yoshua, 2008).

® o

Figure 2.1 : Restricted Boltzmann Machines

RBM is an energy based model and the energy between visible and hidden
units is defined by follwing equation (Ruslan, et al., 2007).

E(v, h, 0) = — Z?:l Zle W,-]-‘vi h] - Z?:l bi v, — Zle al h] (2.1)

Where 68 = {W, a, b} represent the parameters of the model. W;; represents
the symmetric weight between i*" visible unit and the j** hidden. The connection
between bias term and the i*" visible unit is defined by b; . a; connection between

bias unit and the j'* hidden unit. v and h represent the visible and hidden vectors

respectively.

Weights are stored in a weight matrix as in equation 2.2 that satisfies the

following conditions:

(0 Vi 55
Wii —{w]__ Vi j (2.2)

The other properties of unique rows, unique columns and unique sub-grid

are encoded in the same way but processed with the whole weight matrix.
13

Equations 2.3 and 2.4 presents the joint probability distribution of visible and
hidden units (Navdeep and Geoffrey, 2011).

p(v,h,0) = e EWho 2.3)
Z(8) = X, Xpe FhY 24)

Due to stochastic nature of Boltzmann machines there is a separate
probability function used to determine if a single neuron should flip its state
during a discrete time step (Ruslan, et al., 2007). The probability that the model

assigns to the visible vector v is given by the following equation:

1 —
p(v,0) = =T, e 0 (2.5)

2.1.2. Message Passing Algorithms (MP):

Message passing provides powerful approximation algorithms for
problems that can be formulated in terms of, probabilistic, graphical models such
as factor graphs. These methods find applications in statistical physics,

inference, and combinatorial optimization.

The methods have been invented several times in different scientific
communities (Frank R, et al., 2001) and have applications in such diverse fields
as error-correcting codes, combinatorial optimization, artificial intelligence,
signal processing, statistical physics, and many more. In addition, probability
theory and its applications factor graphs are used to represent factorization of a

probability distribution function.
1- Factor Graphs (FG):

A factor graph is a bipartite (or bigraph) graph representing the
factorization of a function. Enabling efficient computations, such as the
computation of marginal distributions through the sum-product algorithm

(Arunkumar and Komala, 2015).

14

Formally, a factor graph, G = (V, E) is a bipartite graph with two types of

nodes i.e.:

v' Variable nodes. These correspond to the vertices in the original graphical
model and are represented by circle nodes in the factor graph e.g. V = {1,
2, 3, 4} be the set of four variable nodes.

v Factor Nodes. These correspond to the set of factors defining the joint
probability distribution and are represented by square nodes in the factor

graph. e.g. F = {fy, f2, f3, f4} be the set of four factor nodes.

The structure of this factorization can be expressed as in equation 2.6 (Frank

R, et.al, 2001).

f(1,2,3,4) = f1(1,2)f,(1,3,4)f3(2,4)f4(4) (2.6)

Figure 2.2, shows a factor graph with four variables and four constraints
defined on these variables. The typical representation uses squares for factor

nodes and circles for variable nodes.

1 £, 11,2}

2 = {1.3,4}

3 T~ 1es

Figure 2.2 : A factor graph

15

2- The Sum-Product algorithm:

The Sum-Product algorithm (Belief Propagation (BP)) is a particular
instance of a message-passing method. The sum-product algorithm is designed to
calculate approximations of marginal probability distributions in loopy graphical

models (Jonathan S, et.al., 2005).

The Sum-Product algorithm is an efficient method for obtaining an
approximate solution for the marginal probabilities p(x), which is exact in the case
of loop-free factor graphs. The Sum-Product algorithm, normally presented as
message update equations on a factor graph, involving messages between variable
nodes and their neighboring factor nodes and vice versa is based on passing
messages between adjacent nodes of the underlying factor graph (Andre, et al.,
2014; Frank R, et al., 2001). In other word, the sum-product is defined in

equations as the following:

e The constraint-to-variable messages 1, (x) equation 2.7 is given by:

Tmn(X) = X {n' € Ny} ITie Nmn dim (x1) 2.7)
n=x n'=x, , allunique

Where is n =x is the variable node in vector Ny, and n' = x,

represent the neighbours of x in Factor Graph (FG) that all are unique.

e The Posteriori beliefs g, (x) is presented in equation 2.8 (Kristian, ef al.,

2009) as below:

0n(x) =Pn=2x) 1] Tma(2) (2.8)

n
The message m is a vector must contain all possibility of factor node
into the specific domain M, for a variable node.

e The variable-to-constraint messages ¢, ,, (x) is given in equation 2.9 as
following:

qn,m(x) = P(n = x) H rmn(x) (2.9)

m' eEMym

16

Where is P(n = x) Represent a priori probabilities vector of variable
node (Olusegun,et al.,2014) if the variable node is k then the element
k in probability vector is 1 and all other elements are 0. And
m' € My, ,,, represent the neighbours of a message m into the specific

domain M, ,,.

2.1.3. The Uninformed Searching Algorithms:

Uninformed Search is also called Brute force or blind search which is a
uniformed exploration of the search space and it does not explicitly take into

account either planning efficiency or execution efficiency (Farhad, et al., 2012).

Uninformed Search is a general problem solving technique that consists of
systematically enumerating all possible candidates for the solution and checking
whether each candidate satisfies the problem statement or not. It uses only the
information available in the problem definition. Several types of uninformed

strategies are (Russell and Norving, 2010):

1- Breadth-First Search.
2- Uniform-Cost Search.
3- Depth-First Search.

4- Depth-limited Search.

5- Tterative Deepening Search.

In searching algorithms, domain specific knowledge is not required. In the
case of uninformed search, the state description is required. It describes the
present state from which the transition will start. In addition, a set of legal
operators is also needed. These operators will direct and specify the way of
movement. The initial state is necessary as a reference point for the present to
next state. A final goal state is also required so that we know whether the target

point is searched or not (Beamer, Krste , and David, 2012).

17

The only thing that a blind search can do is to differentiate between a non-
goal state and a goal state. All blind search algorithms must take O (b) time and

use O (d) space (Scott, et al., 2012).

We have limited our implementation to solve Sudoku puzzle into Breadth

First Search and Depth First Search:

1. Breadth Frist Search (BFS):

Breadth First Search is an algorithm for traversing or searching a tree,
tree structure, or graph. One starts at the root, selecting a node as a root.
This root node will be at the top of the tree. The top is searched and it is
level-by-level traversal and then the nodes below are searched for the
solution. This search will be with all below level nodes. This maybe
considered as a drawback of this algorithms use more memory but will
always find the shortest path first; due to it is searching nature (Akanmu T,

etal.,2010).

The properties of BFS are presented in Table 2.1. It exhaustively
searches the entire graph or sequence without considering the goal node or
solution until it finds it. From the standpoint of the algorithm, all child
nodes obtained by expanding a node are added to a First in_First out queue.
First in_First out means that nodes accessed first explored or expanded first.

This elaborates the level-by-level traversal policy (Charles, 2010).

18

Table 2.1: The properties of Breadth First Search

Property

Description

Class

Search algorithms

Data structure

Graph

Worst case performance

o(|V| + |E]) = 0(b%) every vertex
and every edge will be explored in the
worst case. | V | is the number of
vertices and | E | s the number of edges
in the graph.

Worst case space complexity

O(|V]) = 0(b?) to find the nodes that
are at distance d from the start node
(measured in number of edge traversals)
where b is the "branching factor" of the
graph.

As shown in Figure 2.3 an abstraction of the search order all the nodes are
expanded at a given depth in the search tree before any nodes at the next level

are expanded (Rong and Eric, 2009). Numbers indicate the order in which nodes

are expanded.

Figure 2.3: Breadth Frist Search

19

2. Depth First Search (DFS):

As searching algorithms, Depth First Search is applied for traversing graph
or tree structure. One starts at the root (selecting a node as the root in the graph
case) and explores as far as possible along each branch before backtracking
(Farhad, et al., 2012). Backtracking means traversing to the upper level since the
present position is not the goal state or solution. This maybe considered as a
drawback of this algorithms. Since it may go down a very long branch without

ever coming to the solution node.

Table 2.2 shows the properties of the DFS algorithms. The time and space
analysis of DFS differs according to its application area. In theoretical computer
science, DFS is typically used to traverse an entire graph, and takes time
O(IVI + IEl), linear in the size of the graph. In these applications it also uses
space O(IVI) in the worst case to store the stack of vertices on the current search

path as well as the set of already-visited vertices (Sanjay and Chander , 2014).

Table 2.2: The properties of Depth First Search

Property Description

Class Search algorithms

Data structure Graph

O(|V| + |E|) for explicit graphs traversed without

Worst case performance repetition, O (b%) for implicit graphs with

branching, factor b searched to depth d

O(|V]) if entire graph is traversed without repetition,

Worst case space complexity O (longest path length searched) for implicit

graphs without elimination of duplicate nodes

It searches the graph by expanding each branch to the deepest node, as
depicted in Figure 2.4. Numbers indicate the order in which nodes are expanded.
DEFS is based on the Last in_First out principle where the last item placed on the

top of the stack is the first item to be removed. A drawback from using DFS is

20

that the algorithm can search down a very long branch without ever coming to the

solution node (Olusegun, et al., 2014).

Figure 2.4: Depth First Search

2.1.4. Sudoku Puzzle Problem:

Sudoku is a kind of game problem found in Japan in the mid 80’s and it
become popular for researchers as an image to be deal with by scientific tools
such as neural networks. However, similar games had existed before that it
became widely popular around 2004 when it started to appear in newspapers
where it became an appreciated alternative to the traditional crosswords. Today
Sudoku does not only appear in newspapers but also as computer games and in

international Sudoku championships (Behrooz , 2009).

Sudoku is a popular logic-based combinatorial puzzle game {1, 2, 3...9}.
It consists of 81 cells, contained in a 9x9 grid. Each cell can contain a single
integer ranging between one and nine. As shown in Figure 2.5 the grid is
further split up into nine 3x3 sub-grids. The purpose of Sudoku is to fill up the
entire 9x9 grid such that the following constraints are met (Bertram and Frazer,

2006):

21

v" Each row of cells is only allowed to contain the integers one through nine
exactly once.

v Each column of cells is only allowed to contain the integers one through
nine exactly once.

v" Each 3x3 sub-grid is also only allowed to contain the integers one through

nine exactly once.

Sub-grid Coliunn

Figure 2.5 : 9x9 Sudoku Puzzle grids

The Sudoku puzzle is a special case of a more general type of problems
called Constraint Satisfaction Problems, in this section; both specific Sudoku

problem and the general Constrained Satisfaction Problem (CSPs) are described.

1. The specific Sudoku problem:

Specific Sudoku problem exists different clues levels (David and Steven,
2013). The difficulty is based on how many clues are given from the beginning
and partially on the layout of these clues. A Sudoku usually has a minimum of 17
clues with only one, distinct, solution. Not all of them are playable by humans, at
least not without guessing. A common property of the unsolvable Sudoku is that
they have multiple solutions, which means that not enough clues has been given to

provide a distinct solution (Xiugqin, et al., 2013).

22

A number of cells in the grid are pre-defined by the puzzle setter, resulting
in the Sudoku puzzle having a single, unique solution. Figure 2.6 depicts a typical

Sudoku puzzle and these puzzles are set at different difficulties.

The puzzle in Figure 2.6 is a 9x9 puzzle since it can be solved logically and

does not require guessing and its solution is shown in Figure 2.7.

1
pa |
2
5 4 7
S 3
1 9
3 4 2
5 1
S 6
Figure 2.6 : 9x9 Sudoku Puzzle
6|3|5|7(8|4|9[1)|2
482|511 [(2|16|7([3
1({2|]7]19]|6(3|8|5(4
2(9|13|6|S5(1|14|38|7
S|le|8|12(4|7|13[2]|1
714|113 [(9|8|5([6|9
3(1|6|4|7[5|]2]|]9(8
|S5|12|11[(3]9]|7|4]|6
9(714|8|12|6]|1|3[5

Figure 2.7 : The solution to the Sudoku Puzzle in Figure 2.6

23

2. Constraint Satisfaction Problems (CSPs):

CSPs is a collection of variables all of which have to be assigned values,
subject to specified constraints. Computational problems like scheduling a
collection of tasks, or interpreting a visual image, can all be seen as CSPs. We are
interested in finding a satisfying assignment for the CSPs, which means that we
need to assign values to each of the variables from their respective domain spaces
(Todd K and Jacob H, 2006), such that all the constraints are satisfied. Figure 2.8

shows Sudoku with Constraint Satisfaction.

C10 C11 C12 C13 C14 C18 C16 C17 C18

C1
2
C3
C4
CsS
Co
7
C8

o |\Z3 1 74 | 7S

Figure 2.8 : Sudoku with Constraint Satisfaction

We can defined A Constraint Satisfaction Problem as:

A finite set of variables, X = xj, x2... xn.

1. A domain for each variable, D(X) = D(x;), D(x2)... D(X,), also denoted
as dj, da,..., dn, where di is the domain of xi.
2. A finite set of constraints C(X), where c(X1... Xn) denotes a constraint

involving variables xi... xn.

In other words, the 9x9 Sudoku puzzles define constraints as:

1. Variables: empty slots, and Domains = {1,2,3,4,5,6,7,8,9}
2. Constraints: 27 all-different (Todd K & Jacob H, 2006).

24

2.2. Related Work

Geoffry, et al. (2006) show how to use complementary priors to eliminate the
explaining away effects that make inference difficult in densely connected belief
nets that have many hidden layers. With complementary priors, they derived fast,
greedy algorithm that can learn deep, directed belief networks one layer at a time,
provided the top two layers form an undirected associative memory. The fast,
greedy algorithm is used to initialize a slower learning procedure that fine-tunes
the weights using a contrastive version of the wake-sleep algorithm. In their work,
they found it to be easily trainable when the parameters initialized by greedy layer

wise pre training using an RBM.

Todd K & Jacob H (2006) show the constraint satisfaction using a Tanner graph. In
their work, they found that the MP paradigm is straightforward to apply to some
problems with multiple constraints, with solutions obtained over discrete sets. In
addition, the computational complexity is localized to each constraint. The belief
propagation algorithm applied to this graph to solve Sudoku puzzle problem. The
computational complexity is localized to each constraint. They conclude that

cycles lead to failures in some cases, due to biases in the message passing process.

Andrea, et al. (2007) presented that the message passing algorithm is surprisingly
successful in solving hard constraint satisfaction problems on sparse random
graphs. Its outcome provides a heuristic to make choices at next step. Based on
belief propagation (BP), they consider a simple randomized decimation algorithm,
and analyze its behavior on random k-satisfiability formulae. According to their
work, a vertical tangent point in the k = 3 function ¢(0) in the regime is not exist.
They expect to control through the tree computation, namely a < a (3) ~—3.86. On
their work , they argued that the threshold can be computed through a tree model

and evaluated via density evolution.

Heiko (2008) shows that the message-passing methods provide powerful approximation
algorithm for problems that can be formulated in terms of (probabilistic) graphical
models. In applications such as statistical physics, Sudoku puzzle, simple

optimization problem, the message-passing algorithm can help to solve. He
25

examined the sum-product and max-product algorithms as two generic instances
of message-passing methods that can help to solve highly difficult Sudoku
puzzles. His message-passing approach to Sudoku is not superior to backtracking,
the sum-product algorithm needs up to one minute to find a solution. In case of
NxN Sudoku, the max-product algorithm function-node processing of the max-
product algorithm can be mapped to a polynomial problem. However; for the
sum-product algorithm, no such mapping is known. The fact that function-node
processing’s computational complexity depends on system size is a very unusual

feature.

Tanya, et al. (2008) studied the convergence and stability properties of the family of
reweighted sum-product algorithms or belief propagation algorithm, in which
messages are adjusted with graph-dependent weights. They derive various
conditions that are sufficient to ensure convergence, and provide bounds on the
geometric convergence rates. The experimental simulations on various classes of
graphs validate our theoretical results. Even though they have established the
benefits of including observation potentials, the conditions provided are still
somewhat conservative, since they require that the message updates be contractive
at every update, as opposed to requiring that they be attractive in some suitably
averaged sense. As an example, when averaged over multiple iterations, or over
different updating sequences, an interesting direction would be to derive sharper

“average-case” conditions for message-passing convergence.

Min-Quan, et al. (2009) proposed a puzzle solving algorithm to treat these problems.
Based on the fact that most of Japanese puzzles are compact and contiguous, some
logical rules are deduced to paint some cells. Then, the DFS algorithm with the
“branch and bound” scheme, which is used to do early termination for those
impossible paths, is used to solve those undetermined cells. The experimental
results show that their algorithm can solve Japanese puzzles successfully, and the
processing speed is significantly faster than that of DFS. Their method can solve
those puzzles with compact black patterns quickly using branch and bound

scheme, and provides correct solutions as well.

26

Chiung-Hsueh, et al. (2009) presented a puzzle solving algorithm to treat these
problems. Based on the fact that most of nonograms are compact and contiguous,
some logical rules are deduced to paint some cells. They used the chronological
backtracking algorithm to solve those undetermined cells and logical rules to
improve the search efficiently. Their experimental results show that their method
can solve those puzzles with compact black patterns quickly. The DFS speed can
be improved in case of puzzles with random black patterns using the pruning
scheme. The algorithm proposed can solve nonograms successfully, and the
processing speed is significantly faster than that of DFS. Moreover, their method

can determine that a nonogram has no solution.

In (2009) David, et al. introduced a simple cost less modification to iterative
thresholding making the sparsity-undersampling tradeoff of the new message
passing algorithms equivalent to that of the corresponding convex optimization
procedures. The new iterative-thresholding algorithms are inspired by belief
propagation in graphical models. Their empirical measurements of the sparsity
under-sampling tradeoff for the new algorithms agree with theoretical
calculations. They show that a state evolution formalism correctly derives the true
sparsity under-sampling tradeoff. They found a surprising agreement between
earlier calculations based on random convex polytopes and this apparently very

different theoretical formalism.

Todd, et al. (2009) In their paper, the Sudoku puzzle is a discrete constraint satisfaction
problem is as the error correction decoding problem. Since the puzzle has a
Tanner graph representation, the belief propagation (BP) algorithm can be adapted
to solve Sudoku. They proposed an algorithm for solution to the Sinkhorn puzzle
based on Sinkhorn balancing. A proof of convergence is presented, with some
information theoretic connections. In addition, random generalization of the
Sudoku puzzle is presented, for which the Sinkhorn-based solver is also very
effective. It is interesting that the Sinkhorn balancing technique is more effective

than the BP.

In (2010) Zhengbing, , et al. investigated the use of hardware which physically realizes

quantum annealing for machine learning applications. They show how to take
27

advantage of the hardware in both zero- and finite-temperature modes of
operation. At zero temperature their hardware is used as a heuristic minimizer of
Ising energy functions. At finite temperature, the hardware allows for sampling
from the corresponding Boltzmann distribution. They rely on quantum mechanical
processes to perform both these tasks more efficiently than is possible through
software simulation on classical computers. They show how Ising energy
functions can be sculpted to solve a range of supervised learning problems.
Finally, they validated the use of the hardware by constructing learning algorithms
trained using quantum annealing on several synthetic and real data sets to solve
Sudoku on an NxN grid rather than just a 9x9 grid. A class of polynomial
problems, called P, requires a solution time that increases as a polynomial of the

problem size n, e.g. n"2.

In (2010) Jussi considered an alternatives to pure depth-first search, and show that
carefully chosen randomized search order, which is not strictly depth-first, allows
to leverage the intrinsic strengths of CDCL better, and will lead to a planner that
clearly outperforms existing planners. In their work, they didn’t use the weights
of decision variables obtained from conflicts as a part of variable selection. Such
weights would be able to order the top-level goals and subgoals in the
computation of actions based on their role in conflicts. They believe that this is
the most promising area for future improvement in the implementations of their

variable selection scheme.

Charles (2010) developed a multithreaded implementation of breadth-first search (BFS)
of a sparse graph using a novel implementation of a multiset data structure, called
a “bag,” in place of the FIFO queue usually employed in serial breadth-first search
algorithms. They found that reducers hide the particular nondeterministic manner
in which associativity is resolved. Thereby allowing the programmer to assume
specific semantic guarantees at well-defined points in the computation. This
encapsulation of non-determinism simplifies the task of reasoning about the

program’s correctness compared to a TLS solution.

28

Lijuan, et al. (2010) presented a new GPU implementation of breadth first search that
uses a hierarchical queue management technique, and found that it guarantees the
same computational complexity as the fastest sequential version and can achieve
up to 10 times speedup. They claim that their work is most suitable for
accelerating sparse and near-regular graphs, which are widely seen in the field of
EDA. In addition they conclude that both methods proposed in their work
hierarchical queue management and hierarchical kernel arrangement are
potentially applicable to the GPU implementations of other types of algorithms,

too.

Duane,et al. (2011) presented a BFS parallelization focused on fine-grained task
management that achieves an asymptotically optimal O(IVI+|El) work complexity.
Their implementation delivers excellent performance on diverse graphs, achieving
traversal rates in excess of 3.3 billion and 8.3 billion traversed edges per Second
using single and quad-GPU configurations, per second using single and quad-
GPU configurations, respectively. This level of performance is several times

faster than state-of-the-art implementations both CPU and GPU platforms.

Ruslan & Geoffrey E (2012) show that a Restricted Boltzmann Machines (RBMs) used
for collaborative filtering. On images of 10 handwritten digits (0 to 9), Pretraining
a stack of RBMs using contrastive divergence used to initialize the weights of a
deep Boltzmann machine to sensible values. In addition, they found that the
variational inference can be initialized sensibly by a single bottom-up pass from
the data vector using twice the bottom-up weights to compensate for the lack of

top-down input on the initial pass.

Farhad, er al. (2012) proposed new blind algorithm for solving n- queens using
combination of DFS and BFS methods. Their results showed that performance
and run time in this approach better then back tracking methods and hill climbing
modes. As a result, the DFS algorithm is quicker than BFS algorithm and Number
of extended node in DFS algorithm is less than BFS algorithm as well as the
required memory for BFS is larger than DFS. Using this method, time and cost of

solving n-queens problem is minimized in comparison of old methods.

29

Cecilia & Luciana (2013) proposed a new approach for solving Sudoku which is by

Nate,

modelling them as block-world problems. In block-world problems, there are a
number of boxes on the table with a particular order or arrangement. The
objective of this problem is to change this arrangement into the targeted
arrangement with the help of two types of robots. In their work, they present three
models for Sudoku and modellized Sudoku as parameterized multi-agent systems.

They use Temporal Logic of Actions (TLA) for formalizing our models.

et al. (2013) provide a study where a description of all techniques to conclude
with some general remarks, comparing message-passing algorithms based on
ADMM with the family of belief propagation (BP) algorithms the sum-product
version of belief propagation, used to compute marginal probabilities in graphical
models, to solving Sudoku puzzle, they showed potentially solves non-convex
problems much faster than Divide and Concur algorithms, have important
advantages over the more widely used belief propagation algorithms, and they
believed these algorithms have a promising future with many possible

applications.

Stefano, et al. (2013) used the model Selection problem in graphical models,

specifically in the context of hand-written digit recognition. A graphical model
specified as a factor graph and train Restricted Boltzmann Machines (RBM). They
found that the method is a massively parallelizable. In addition, anytime algorithm
which can also be stopped early to obtain empirically accurate estimates that

provide lower bounds with a high probability.

Nathan (2013) provide a study of the puzzle game Fling, used a number of brute-force

search techniques as breadth-first search to enable designers to explore puzzles
and how modifications of the puzzles influence solvability. In their work, they
represent the preliminary stages of work on automated large-scale analysis of
puzzles with the purposes of semi- or fully-automated design of new puzzle
instances. In order to improve and understand the limits of the approach, much
more work is needed, stretching the applicability of simple searches for puzzle

design.

30

Baptiste & Jean (2014) in their work, they designed and implemented a complete
solution to detect and recognize a Sudoku in an image taken from a phone-
camera. The digits are recognized using a Deep Belief Network (DBN) are
typically implemented as a composition of simple networks, such as a Restricted
Boltzmann Machines (RBMs). They found that their method provided successful
on dataset, achieving 87.5% of correct detection on the testing set. Only 0.37% of

the cells were incorrectly guessed.

Wolfgang Maass (2014) discussed Boltzmann machines as computational perspective
architectures for solving large constraint satisfaction problems, with Sudoku
puzzle. They also described why the results were paving the way for a qualitative
jump in the computational capability and learning performance of neuromorphic

networks of spiking neurons with noise.

Jossy (2014) presented a research about “SUDOKU puzzles”. They described the role
model strategy as a convex program whose solution is the Bayesian optimal
estimator in training. By running the sum-product rule and the estimator-in-
training in parallel offline during a simulation, they showed that the strategy
reduces to Monte Carlo integration in the non-parametric case; In fact,
applications of post-processing optimization for sub-optimal estimators are

burgeoning in the literature.

Caroline & Jossy (2014) discussed Codes based on Sudoku puzzles. They belief that
propagation decoding introduced for the erasure channel by exchanging messages
containing sets of possible values and represented by a factor graph. In their work,
they showed some preliminary numerical results, listing thresholds that emerge
from the density evolution recursion, alongside with a conjectured estimate for the

rate of long Sudoku-type codes.

Rutuja & Payal (2014) used two methods to search the tree, the depth-first and the
breadth-first search. In their work, they calculated many tree nodes in the same
depth in the current game tree, which is the breadth-first search. Moreover; each
cycle in the search process takes in the deepest nodes of the current game tree.

The approach can take advantage of the capability of GPU to compute massive

31

nodes in parallel and GPUs flexibility to test by implementing it for Sudoku. The
results of implementation can be compared with serial implementation of game

tree search.

Sanjay & Chander (2014) used Depth First Search as solving algorithm for Sudoku
puzzles. They created Sudoku puzzles in different levels respectively within
tolerable time using their developed solving and generating algorithms while
guarantees each of these puzzle has a unique feasible solution. Their model is very
efficient, because it is able to solve every Sudoku instance in a very short time. It
takes 0.2 seconds to 0.5 seconds for the diabolic ones according to their difficulty
levels. This fact showed that the different difficulty between two levels affects the
performance of a human solver but not that of the program. A mathematical

model has been formulated.

Olusegun, et al. (2014) implemented Depth First Search and Breadth first search and
showed that Breadth first search is complete, optimal based on some condition. In
contrary, the time and space complexity is exponential. Depth first search space
complexity is linear but it is neither complete nor optimal. Depth First iterative
Deepening Search is a good search strategy and is better than both DFS and BFS.
They concluded that most uninformed search algorithms have serious drawbacks.
They came up with the results that Breadth First Search uses too much space and
Depth First Search uses too much time and is not guaranteed to find a shortest part

to a solution.

Taruna, et al. (2015) applied backtracking, brute force approach to solve Sudoku. They
found that the proposed algorithm is able to solve such puzzles with any level of
difficulties in a short period of time (less than one second). Moreover, the brute
force algorithm seems to be a useful method to solve any Sudoku puzzles and it
guarantee to find at least one solution. The algorithm does not adopt intelligent

strategies to solve the puzzles.

Jossy & Joned (2015) described a non-linear codes with local permutation constraints
inspired by Sudoku puzzles. Regarding the decode; they showed that permutation

constraints require the evaluation of a permanent using trellis. Decoders are

32

specialized by them to ensure channels where the operation becomes a trellis. For
the encoder, they described a universal approach to encoding a code with local
constraints, and discussed its limitations when based on a sub-optimal decoder. In
their work, the noticed that having started as a tool for teaching belief
propagation,the study of codes with non-linear constraints is having unexpected
repercussions. It has brought up some interesting technical hurdles, taught us a
few things about non-linear constraints and how different they behave from linear

constraints.

33

Chapter Three

Methodology

3.1. Introduction:

This chapter presents the methodology of the research and give details about
each point in the proposed method. In addition, the modifications that might be
interesting to do to each algorithm for solving Sudoku puzzle using Java
programming language. The Net Beans IDE 8.0.1 for Java Development is
applied to complete the coding aspect that have been described in chapter two and
will be presented in the coming sections. Moreover, the Parallelising algorithms

will also be discussed and the comparison between these will be in this section.
3.2. Sudoku Puzzles problem:

Earlier we show that a Sudoku grid can be filled with many configurations
of symbols, only a few of which are valid solutions for which search strategies are
applied. In addition, the Parallelising how to improve searching based on the
structure of the problem taking into account. All search algorithms make use of
the concept of a search space, which is the set of states being searched for a

solution.

A previously generated puzzle from WebSudoku.com and converting them
in the format of line (Series) in two text file from different clues (17 and 27)
Dataset, each file contain 10 Sudoku puzzles so our program for solving can use
them. In addition, save output for the solution of the current Sudoku puzzle, and
the time to find the solution will be saved into text file in the format of matrix
9x9. In other hand, a separate text file will be used to save the time and one to

save the solution for each method and for each case.

Figure 3.1 shows the text file as input contains the numbers 1 through 9 with
a “0” indicating a blank space on the Sudoku grid. The program is set to output
the solution of the current Sudoku puzzle, and the time for the solution to be

found.

35

Fle Bt Search View Encodng Lenguage Settings Mawo Run Plugins Window !
e L= LRV FILEIEE 3 J@u‘
I sl 70t [‘

L 000000010400000000020000000000050407008000300001090000300400200050100000000806000
2 00000002150040000000080000002150000007000000000000030400000800300070000006020000
3 050200000000030400000000000000601003804000000700000000020305000000000720000040080
4000000061200700000000800000013060000050400200000000700000020050700000400800000000
5 7050000000000104002000000000400002050003700000000000%0530000100000502000000900000
& 0000000715000000€0020000000004070000030000400000910000700600008000300200100000000
7 000000012040050000000009000070600400000100000000000050000087500601000300200000000
£ 000000012050400000000000030700400400001000000000080000920000800000510700000003000
5 500400060009000000£40020000000001000205000500000500000000090000003000000060003002
L0 000000021503000000600000000000104060700000500000200000000480300010070000200000000

DRCROR?

.Im-l
Ll Ll

Figure 3.1: 10 Sudoku puzzles dataset text file

3.3. Data Structures for Search Strategies:

The main idea to solve the game is to try each combination of numbers in
each empty spot making sure that the rules are not violated. The Sudoku puzzle
will be used as a practical example of the solving algorithms discussed in previous

sections.

The Search Strategies for solving Sudoku puzzles is implemented in Java.
The source code for this implementation is given the appendix. The algorithm

reads Sudoku puzzle from the text file.

3.3.1. Restricted Boltzmann Machines Strategy:

Restricted Boltzmann Machines are probabilistic graphical model that can

be interpreted as stochastic neural networks.

We are interested in the geometry of the set of all possible marginal
probability distributions of the visible variables. Which can be interpreted as
stochastic neural networks. Binary RBMs, in which each variable conditioned on
the others is Bernoulli distributed, are able to approximate arbitrarily well any
distribution over the observable variables (Le Roux and Bengio, 2008; Montufar

and Ay, 2011).
36

For implementation (RBM) on Sudoku, The energy measure with weights
and the state associated for every node of the 81x9 =729 nodes in Sudoku
network, which is used to determine if the state of single neuron should be
flipped, is defined. Each node has a binary state of either on or off. This is also
translated to solutions, where only one of every nine neurons in groups will be in
the state on. For every number being placed on the grid, there is nine possible
assignments, and the probability of a neuron being activated is defined equation

3.1 as follows:

1
Pi—on = AE; 3.1
1+e T

E is the summed up energy of the whole network into neuron i, which is a
fully connected to all other neurons. 7 is a temperature constant controlling the
rate of change during several evaluations with the probability P;_,, during

simulation (Wolfgang Maass, 2014). A neuron i shows in Figure 3.2.

Update S,

Figure 3.2: A single neuron in Sudoku grid

A single neuron is a single computation unit it begins by summing up all
weighted input and thresholding the value for some constant threshold ©. Where
random weight matrix and random states is will be initialized for the 81x9 = 729
nodes in the neural network. Then the given grid values are inserted as
activations of states in the associated groups of neurons with all others being set

to the off state. This ensures that only the given activations are active, Encode

37

Sudoku restrictions into the weight matrix. Negative connections are introduced

between different digits within the same group.

With all configurations done it is then the time to launch the simulation
that runs in discrete time steps. At every time step, the energy function is
evaluated for all nodes. The energies are then processed which renders the
probabilities of nodes flipping state, which is then performed to varying degrees.
Since simulation is used with a lowered temperature 7 there also small
adjustments at certain intervals. This is done in a timely manner which allows all
puzzles to be solved. A valid solution can be found by looking at all states and
inspecting the requirements of Sudoku. Commonly the solution will appear at
the end of the simulation when temperature has been lowered to its minimum.

As in Figure 3.3.

< Read Sudoku grid >

!

Unitize random state and
random weight matrix

Encode Sudoku constraint
into weight matrix

A 4

Iteration= 1000000

Yew{ Solution not Found >

No

Check Solution

Found solution Yes

< Update state [4—

No

Compute Energy E 2.1

v

Compute probability E2.3 , E2.4

v

distribution visible E2.5

v

Compute probability E3.1

Successfully find a cell with highest
probability and lower tempareture

Assign cell with a value which has the highest
relative probability

Figure 3.3: Flow chart for implemented RBM algorithm.

38

3.3.2. Message Passing Strategy:

Message passing is used for finding the probability distribution of the
variables over the space of satisfying assignments in a Constraint Satisfaction

Problems that can be factorized in terms of local functions (factors).

It involves passing local messages (according to some message update
rules) over the edges of a factor graph with nodes for the variables and for the
factors. Each factor node is connected to every variable node over which the
factor is defined. Communication among nodes is established by sending
messages over the edges. Where a node collects results from a sub-part of the

graph and communicates it to the next neighbor via a message.

The Sudoku puzzle can be represented as a bipartite graph. In the graph,
9x9 Sudoku puzzle cells can be mapped to set ‘S’ and all the constraints that
need to be satisfied can be mapped to set ‘C’. All cells (S») are mapped to the set

‘S’ by sending probabilistic messages between adjacent nodes.

Each message m is a vector, must contain all possible numbers as
Domain= {1, 2, 3,4, 5, 6,7, 8, 9}, meaning the possibility of one number can be
filled into the specific cell. After several rounds of message passing, different
rows, columns and sub-grid constraints (C,) are mapped to a set ‘C’ in that
order. Once the two sets are defined, edges are introduced based on the
relationship between the cell and the constraint. An (undirected) edge is
presented between a cell node and a constraint node, if the constraint is

applicable to that cell node.

Sudoku with constraints satisfaction shown in Figure 2.8 is mapped
applying message passing as presented in Figure 3.4 show that the number of
cell nodes is 81 and the number of constraint nodes is 27. The domain associated
with each cell node is 9. Dimensions of N, matrix is 27x9=243. Dimensions of
M, matrix is 81x3=243, that appear into flow chart will be initialize with zero as

in Figure 3.5.

39

The 77, (x) in equation 2.7 the message that constraint C,, sends to cell
S, 1is the probability of satisfying constraint C,,defined when cell S,
takes the value x in vector {1,2,3,4,5,6,7,8,9}, and the message is
passed from a constraint to a cell in message vector as:

T (X) = p (C,, is satisfied|S,, = x)
Tmn = [T (D) Tmn(2) Tinn(3) Tinn(4) 1inn (5) 1mn (6) Tin (7) 1imn (8) imn(9)

Tmn (X) = Z 1_[qum (1)
{n' € Nmy} LENmn

The g, (x) in equation 2.8 the calculated cell vector value based on the
messages sent and received. And the probability message cell S,, sends
to constraint C,, is the probability for all other constraints associated
with cell S,, besides C,,, that satisfied when cell S,, takes value . The
Gnm (x) in equation 2.9 the message that cell S, sends to constraint

C,, 1s defined as:

Qimn) = P(Sylall constraints involving S, except C,, are satisfied).

Also the message passed from cell S,, is a message vector g, (x).

Q@ =Pa=2) [] e

m' €Mpm
The P(n = x): is a priori probabilities vector of cell S, if the cell is
filled with number k , ke{1,2,3,4,5,6,7,8,9} then the element k in
probability vector is 1 and all other elements are 0 as p, =

[100000000].

40

Row Column Sub-grid
constraints constgaints constgaints

| | | N 1
G G Cs Cio Cip Cig Cis Cyo Cyy

Figure 3.4: The factor graph of a 9 x 9 Sudoku solver

(Read Sudoku grid)

| Initialization: Set {Sn, Nm, Mn, Cm} to O |

v

initial probability vector distribution
for Sn (s Vector) and Cm (c Vector)

A

(Solution not Found N count < max_iterations.

Yes

each cell Sn, Perform a row wise scan
and identify the first missing node.

| Send constraint to cell message. E 2.7 |

v

| Calculate and Normalize the a posteriori beliefs. E 2.8 |

v

| Update the cell probability vector value |

v

|Send cell to constraint message. E 2.9 |

| Update the cell values }—>

a valid solution found

Yes

C Solution Found)

Figure 3.5: Flow chart for implemented MP algorithm.

41

3.3.3. Breadth First Search Strategy:

BFS is a general technique of traversing a graph. A path-finding algorithm
is capable of always finding the solution, if one exists. BFS expands nodes in
order of their distance from the root level-by-level; each node in the search tree
is expanded in a breadth wise at each level. These all expanded nodes are

retained till the search is completed (Scott, et al., 2012).

We have used the concept of a queue to expand the states from a graph.
The Breadth-First Search expands the nodes horizontally and the expansion
process storing one copy of the board for each state. As shown in Figure 3.6. (a)

and (b) copy of the board.

42

Possibilities 5, 6,7, 8,9

8
1
4
1
8
(a) The search tree is expanded
5 1 6 1 7
4 4 4
2 2
5 4 7 5 4 7 5
3 8 3 8
9 1 9 1 9
3 2 3 4 2 3 4
5 5
6 8 6 8
8 1 9 1
4 4
2
5 4 7 5 4 7
3 8 3
9 1 9
3 2 3 4 2
5 1
6 8 6

(b) Copy of the board
Figure 3.6: First step searching using Breadth-First Search

43

Figure 3.7 (a) shows that before expanding the next level to the bottom, it

expands all the nodes from the same level first. (b) copy of the board for current

state.
Possibilities 3,6,7,8,9 - 1

4

“»

s| [4] [7
3
1 9

3 4 ..

3 1

6

(a) The search tree is expanded

E] e i E :
4 4 4
3 7 3 4 7 5 7
8 3 3 3 8 3
1 9 1 9 1 9
3 4 2 3 4 2 3 4 2
5 1 z 1 z 1
8 6 8 6 8 6
E anl E 1
4 4
3 7 3 4 7
8 3 3 3
1 9 1 9
a 4 2 E) 4 2
5 1 3 1
8 6 8 6
(b) Copy of the board

Figure 3.7: Second step searching using Breadth-First Search

44

Now we have nodes, we need somewhere to put them. The frontier needs
to be stored in such a way that the search algorithm can easily choose the next

node to expand according to its preferred strategy.

The appropriate data structure for this algorithm is a queue. Furthermore,
BFS uses (First In_First Out) queue to guarantee that the nodes are going to be
expanded in the same order that we are created. First Input_First Output queue

order.

Figure 3.6 A and E nodes were already expanded, these they do not belong
to the queue anymore. The expansion order is inverse to the creation order. This
the five first nodes were generated in the order as follows: 1%t - A, 2™ - B, 3™ -
C, 4"- D and 5" - E. The first node to be expanded is the first node inserted in

the queue - node A.

Figure 3.8 Queues are characterized by the order in which they store the
inserted nodes. Which pops the oldest element of the queue (Charles, 2010). The

operations on a queue are as follows:

v EMPTY (Queue) returns true only if there are no more elements in the
queue.

v" POP (Queue) removes the first element of the queue and returns it.

v" INSERT (element, Queue) inserts an element and returns the resulting

queue.

45

{isit and mark the first node of Sudoku gr@

| Put the first node into queue |

Golution not foun}yes

[

No

+

| Pop a node n from the queue |

!

| Calculate possibility of node n |

Solution Found
Find path to the Solution by yes
following parent node of n

n= Goal node?

No

4

Get the Successors of n Yes

Successor in
adjacency list

No
h 4

Yes | Insert Successors to Queue | No

> Successors Finished?

Figure 3.8 : Flow chart for implemented BEFS algorithm

3.3.4. Depth First Search Strategy:

Depth first search is also important type of uniformed or blind search. It
chooses to go deeper into the graph. DFS visits all the vertices in the graph
using the concept of a stack to expand nodes vertically, and after DFS visited all
the reachable vertices from particular source vertices it chooses one of the
remaining undiscovered vertices and continues the search. In addition, stop
increasing the depth only if a goal or a dead-end is reached. To make this
mechanism possible, the algorithm uses the concept of a Last in_First out Queue
as shown in Figure 3.6 (a) and (b) Copy of the board.

46

Similar to FIFO, the expansion order is inverse as the created order. The
five first nodes were generated in the order as follows: 1% - A, 2% - B, 3. C, 4%
— D, and 5" — E as shown in Figure 3.6 and storing one copy of the board for
each state. The first node to be expanded is the last node inserted in the queue E.

and as shows in Figure 3.9.

Possibilities 1, 5,6,7, 8 1
2.
5 4 7
8 3
1 9
4 2
5 1
8 6

(a) The search tree is expanded

1 H 1 H 1
4 1
1|2 5|2 6|2
5 1 7 5 4 7 5 7
8 8 3 3 3
1 9 1 9 1 9
3 1 2 3 1 2 3 1 2
5 1 5 1 5 1
8 6 8 6 8 6
. 1 . 1
4 4
7|2 8|2
5 1 7 5 7
8 3 8 3
1 9 1 9
3 1 2 3 1 2
5 1 5 1
8 6 8 6
(b) Copy of the board

Figure 3.9: Second step searching using Depth-First Search

47

Figure 3.10 Flow chart for implemented DFS algorithm as queue (also
known as a stack) represents the next nodes that are going to be visited and
consecutively expanded. In this case, the newest element of the queue is popped
out. And the priority queue, which pops the element of the queue with the

highest priority according to some ordering function.

@it and mark the first node of Sudoku gr@

| Put the first node into Stack |

G()]uti on not f()unDd—yes Stack empty ? -

l

No
<+

| Pop a node n from the Stack |

!

Calculate possibility of node n |

Solution Found
Find path to the Solution by yes n= Goal node?
following parent node of n

No

4

Get the Successors of n Yes

Successor in

adjacency list
No
h 4
Yes Insert Successors to Stack No
— Successors Finished?

Figure 3.10: Flow chart for implemented DFS algorithm.

48

Chapter Four

Results and Discussion

4.1. Introduction:

The results obtained from different experiments with different strategies and

algorithms will be presented and discussed in this chapter.

4.2. Numerical results:

As described in the previous chapter, the algorithms are applied for solving
20 Sudoku puzzles. Out of these 20 puzzles, some are unsolved whereas; most

have been solved. The numerical results obtained are presented in table 4.1 below:

Table 4.1: Comparison of Algorithms performance to Solve Sudoku puzzles

Total 20 Sudoku Time taken for Solving Percentage of
Algorithm
Solved | Unsolved Minimum Maximum Success
Restricted Boltzmann Machine 18 2 6.5536x10* sec 0.0118 sec 90 %
Message passing 11 9 814481410 sec 1.1530x10!! sec 55 %
Breadth First Search 20 0 0.3808 sec 277.3736 sec 100 %
Depth First Search 20 0 3.1130x10* sec 36.6744 sec 100 %

The above table shows that out of 20 Sudoku puzzles two were unsolved
when applying Restricted Boltzmann Machine percentage of success 90% of the
total puzzles. On the other hand, percentage of success in case of Message Passing
about 55%, the results for Breadth First Search and Depth First Search the

percentage of solved puzzles is 100%.

The table 4.1 also shows the maximum and minimum time taken by
different algorithms to solve the Sudoku puzzle. In addition, the Restricted
Boltzmann Machine is the best among all four algorithms with time taken to solve
the 9x9 Sudoku puzzles is the shortest about 0.0118 sec. On the other hand, the
DFS comes in the second position with a solving time longer than RBM and

solving all puzzles. These results will be presented graphically later.

50

4.3. Algorithms Performance:

It is common that different algorithms will have different performance
from the point of view of efficiency and other parameters such as time taken for
Solving and correctness. The representation of how different algorithms are
sorted in terms of time taken for Solving so that we can plot puzzle index versus
time taken for Solving distributions to get an idea about the performance of each
algorithm. There are different ways by which performance can be descripted,
one of those is histograms that show the frequency at which puzzles fall into a
set of time intervals. Also shows possible underlying features such as if, the
Sudoku solver solves the puzzle with an already known distribution and this
applied to with the four algorithms. Where the first 10 puzzle of 20 case study

Sudoku puzzles is 17 clues and the second is 27 clues for all algorithms.

4.3.1. Restricted Boltzmann Machine Performance:

The Boltzmann machine is applied as one of the methods for solving the
20 Sudoku problems. It is found that the solutions obtained from Boltzmann

machine are different and still a valid solution. The time taken for the 20

experiments is given in Figure 4.1 below.

0.012 = ; ;
i — — REM time
1
0.01 F P ! -
i 1
Fl 1]
1
= el &} |
£ 0.008] =
=t 1
3 1 'y
oy i | i
£ 0.006 S -
= r f L]
£ 1 S "‘
= I
= 0.004 - L v |
[1
1! =
[T \1 F‘ﬂ-—q
0.002 = = \ .
h*l:l—cl_.g_ﬂ..ﬂ_ﬂ-—-l:l- -
O
u] 2 4 [a 10 12

14 165 15
Testing of total 20 puzzles

Figure 4.1: Time distributions for restricted boltzmann machine

51

Figure 4.1 shows the Boltzmann's machine was able to solve 18 puzzles
out of 20. Two puzzles reported as unsolved one in the case of 17 clues puzzle
and one in the 27 clues Sudoku. The time distribution in the above figure
shows that the solving time in the case of 27 clues is less than of the 17 clues
puzzle. It is noticed that puzzle 2 in the 17 clues took the longest time followed
by puzzle number the eight. The time mentioned in the above figure is in
seconds hence except two of the puzzles have been solved in a time less than
0.005 sec. the number of iterations taken by this method varies from 975 to
447490 iteration.

Figure 4.2 shows histogram for the time taken to solve different puzzles,
which clearly shows that the common time taken lies between 0.0007 to 0.004

seconds.

| _ Histogram for RER

Qccurences in testing of total 20 puzzles

1

o 0.o02 0.004 0.005 0.002 o.o1 o.o12
Solution tirmes (seconds)

Figure 4.2: The histogram for restricted boltzmann machine

Figure 4.2 shows that the highest occurrence in testing of total 20 puzzles

is near to 0.001seconds as time taken to solve the 27 clues puzzles.

4.3.2. Performance of Message Passing:

The message passing algorithm performance shows that the time taken for
solving different puzzle is not convergent. Moreover, there is no difference from
the solving time point of view in the case of 17 and 27 clue cases. Figure 4.3
shows that the time taking is much greater than in the case of boltzmann

machine since it approaches 12x10'° seconds in puzzle number 6.

52

—
11 F "i [1 — MP time |
al /‘q\\ H ' " -
!
= & = Y H ' Pl -
= b i]i. i 1i
z 7k % I _
= = ,’ 1 Pt
w BL hY 1 I 1 |
it \ L v } 1
E L /El L] I 1
s °r N L ! F l
= = L] I 1
= 4r 1 I 1 T
e 1 I 1
al 1 I v .
1 F] 1
2 [I ¥ .
0. I]
1 1 '1‘]
1 1 1 1 1 1 1 1 1 = — [
0 1 =] 3 4 5 & 7 g =] ™ 11

Testing of total 20 puzzles

Figure 4.3: Time distributions for message passing algorithms

The following figure shows the time taken to solve any of the puzzles is
different from other puzzles. Figure 4.4 clearly shows that the message passing

algorithm cannot solve two puzzles with the same time. This is applicable for
both the 17 and 27 puzzles.

| I Histogram far MP
1.8

4 5] 8

Solution times (seconds)

N

]

Occurences in testing of total 20 puzzles
e 0o o B
hJ o m @ =

[m]

[m]
]

Figure 4.4: The histogram for message passing algorithms

53

4.3.3. Performance of Breadth First Search:

Figure 4.5. Shows the time distribution for the Breadth first search, when
solving 20 Sudoku problems. It is clear that all of the 20 Sudoku problems have

been solved. The time taken in the case of 17 clues puzzles is longer than in the
case of 27 clues puzzles.

300 T T T T T T T T T
F —0 —BFS time
i B)
250 a 1 _
£ 1
o :
— 1
o
200 - 1 —
E ra 1
o= = 1
e ==]
@ 150 ! 1 .
R= ! 1
= £ 1
= f 1
=
= 100 i 1 |
=a
= (= \
1
a0 - 1 _
1
1
1
o 1 1 1 1 T e T, N, B, R, B, P, DR O oy S
u} 2 E} B =}

=/—aa-0a-a-a-0-0-4a0
10 12 14 16 18
Testing of total 20 puzzles

Figure 4.5: Time distributions for breadth first search

Here the best performances for algorithm is with the 27 clues Sudoku
puzzles of a minimum solving time equal to 0.3808 sec. The histogram in Figure

4.6 clearly shows this result. It is worth to mention that the solving time is much

less than in the case of message passing algorithm.

10 T T T
| _ Histagram for BF S

=]
=
B 1
[)
=
=T a
[}
=
E b i
=
£ 5 7
I
= 4 7
= 3 i
oy
=
g 2 1
(e

D 1 IJI 1 |I

a 50 100

150 200 250
Solution tirmes (seconds)

Figure 4.6: The histogram for breadth first search

300

54

4.3.4. Performance of Depth First Search:

The performance of Depth first search when applied on the same sample
of 20 Sudoku problems is shown in Figure 4.7. Here in the case of 27 clues, the

performance is also similar to the breadth but still faster than the Breadth in both

cases.

40
L_l-l —A — DFS time
3|/ .
1
L 1 i
N 30 :
n 1
g 25 ! I? -
= 1 1
2 1 !
2 =0 11y
z r 1]
= [
s Loy
= 157] A 7
& Vi \ ;N
1o "I g]
'r’ l 1
1 !
5 [‘l lj/ I]__l 1Y -
a 1 s ri A"
] L L P — T S I B P B W B W, |
0 2 4 G g 10 2 14 B =] 20

Testing of total 20 puzzles

Figure 4.7: Time distributions for depth first search

Figure 4.8 shows the histogram for depth first search algorithm. It is
clearly that in the case of 27 clues the solving time is small when compared with

the Breadth. The depth first solving time is shorter than in the case of Breadth

First Search algorithm.

12

| |] Histagram for DFS

-
a

Occurences in testing of total 20 puzzles
o

a 1 1 I 1 II 1 II

o 5 10 15 20 25 a0 a5
Solution tirmes (seconds)

A0

Figure 4.8: The histogram for depth first search

55

4.4. Discussion:

In this study, four different algorithms have been studied and applied for
solving Sudoku puzzle. The main principle of each of these algorithms and their
way of analysis is presented. The applied algorithms were coded in Java language
tested using two different Sudoku puzzles 17 clue and 27 clues puzzle. For each
of these two kinds of puzzles, ten (10) samples have been used for testing and
presented to be solved by the algorithms in this study. The results obtained for
these two kinds of puzzles i.e. the 17 and 27 clue puzzle when applying the four
different algorithms were presented at the beginning of this chapter. The results
given covers two main factors i.e. the execution time for each algorithm and the
number of solved and unsolved puzzles. When comparing these results, we can

see that the message passing algorithm is not homogenous with the other three
algorithms i.e. the RBM, BFS, and DFS. The time distribution presented in Figure
4.9 shows the equality between the RBM, BFS, and DFS searching algorithms.

On the other hand, MP has an aberrant time distribution value. The results given

in this figure covers the 20 Sudoku puzzles.

= 10 Time distribution
12

T T T T
?. = w8 Restricted Boltzmann Machine
Jl — — ' -Mhessage Passing
10 1
L]
]
1
]
1

Breadth First Search

‘/—‘ i : - Depth First Search
— A ' [
= gl L ! L i
= 1) i—l
=] -
z LY ! F 1 i
o ‘ r T ' -
L - [i
£ ° S il
= v S 3 i -
= 2 L I 1
= 4F 1 il .
5] -] .
L 1
- l -
LI L
2F 1 i 1 m
¥ L
1
| ey e 1 e e ey e 1 e e v i 1 W ey e 1 i e s i 1 e e -
a 2 4 B =] 10 12 14 16 18 20

Testing of total 20 puzzles

Figure 4.9: Aggregation time distributions of all algorithms

When referring to the previous figure we see that the time for RBM and
DES is closed to each other therefore, the following figure shows these three
results in more details. This result shows that the Restricted Boltzmann Machine

has the optimal time distribution followed by the Depth First Search.
56

Tirme distribution
BDD T T T T T T T T T

2580 —

200 - —

150 —

= Restricted Boltzmann Machine
Breadth First Search

Salution times (secands)

100 - — — -Depth First Search 1
a0 - —
\‘
Y ./'\ -
O e e e e) | i S e e
a 2 4 =3 8 1 12 14 16 18 20

Testing of total 20 puzzles

Figure 4.10: Aggregation time distributions of three of the algorithms

4.5. Evaluating problem-solving performance:

It is well known that when applying different tools to deal with or to solve
the same problem, there are some factors that need to be taken into account in
order to evaluate the performance of these different tools. Time, space, optimality,
and completeness are the four main parameters that can lead to real evaluation

when applying different tools to the same problem.

1- Time Complexity: defined as the maximum time taken to solve the Sudoku
puzzle. This parameter differs from one algorithm to another as follows:

e For Boltzmann machine the time complexity is N°, since it is checking a
row then a column and then a block hence takes N * N * N as a total time
to check. Where N equal 9 and the time complexity equal O(729) as a total
time to check.

e In the case of message passing checking is by the puzzle itself. Therefore,
the time is so long and cannot be controlled by the algorithm. There is way
of checking will be row, column, block, and grid. This means that the time
is N*N*N=*N or N*. Where is N equal 9 and the time complexity equal
0(6561) as a total time to check.

57

The Breadth first search complexity time is O(b?) where b is branches
length generated by Sudoku and d is the depth of that branch. There are
981 attempts.

Depth first search O(b™). In this case b is 9 and m maximum depth of tree

structure equals 81, there are 981 attempts.

2- Space Complexity: Similar to the time complexity, but it represents the

maximum space required for Sudoku to be solved. For the different algorithms

applied, these four parameters are as follows:

In Boltzmann, O(dN°), where d=81 is depth of network structure and N’ is
the maximum time to find a solution for the reduced 3x3 grid, the space
complexity equal to O(81x729).

Massage passing: the space complexity is calculated based on the
probability where V represents the vector max v € L(V). When having 9 x
9 Sudoku. The total cells in the puzzle equal 81, for each cell there are
depth limit of tree structure equal 27 as constraints, 9 cells in row and 9
cells in column and 9 cells in sub-grid. That will be expressed as constraint
on the vector ={1,2,3,4,5,6,7,8,9} that is only one element in the
probability vector can be equal 1, all others must be 0.

In the case BFS, the space complexity is O(b?) when having regular 9 x 9
Sudoku. Here b equals 9 and d equals 81 and m is maximum depth of tree
structure, hence there are 981 nodes open at the deepest level.

The space complexity in DFS, O(bm) ,where b is branching factor of tree
structure and m is maximum depth of answer in tree structure. O(b x m)

there will only be 9 x 81 =729 nodes open at a time.

Optimality: the optimality refers to an optimal way to find a solution. In some

cases a solution can be found but not with an optimal path or way. This affects

to a great extend the time taken for the solution and the memory and other

parameters used. When referring to the different algorithms we found that the

Boltzmann can be considered as an optimum among the four applied

algorithms from the execution time point of view and it has different solution

for the same Sudoku as well. On the other hand, the Depth First search is an

optimal from solutions point of view but with time longer than that of

58

Restricted Boltzmann algorithm. The following Figure 4.11 presents this

result.

Table 4.2: Algorithms performance for solving problem

Time Space
Algorithm Optimality | Completeness
Complexity Complexity
Restricted Boltzmann | O(N?) 0(dN?3) No No
Machine =0(729) =0(81
X 729) 2 failed 2 failed
Message passing O(N%) O(|V|exp(max v No No
=0(6561) | e VIL(V)]))
9 failed 9 failed
Breadth First Search 0(b%) 0(9%") = 0(9%h) Yes Yes
= 0(9%)
No failed No failed
Depth First Search om™) 0(bm) Yes Yes
= 0(9%) = 0(9 x 81)
No failed No failed

59

050200000
000030400

oco0o000O0CO0OO0O0
0o00e01003
804000000
700000000
020305000

acoo0o0007T1C0

oo0o0o040080

(a) Sudoku problem

4 3 %52 1886 37
28173645385
67 3459128

4 56 2 1% 378
1825374¢8e¢8%
537864521
295671843

5% 2 e 71843

B 1455%32T7@¢6
73668 245 %1

864923157

71345886 52
6 21385934

12738565664
34 8% ¢ 2715
S e 5147 382

548 79%271c¢6
3785146 285

(c) Message passing solution

(b) Boltzmann solution

4 352 18¢8¢ 37
28173 645358
&7 3455128

4 5% 21886 37
2817364585
e 734535 %128

3% 2 e 71843

5% 2671843

814553276
7368245691
127 38565%¢64

8145%9%327¢
7368245651

127 38565¢64
348 5%¢6e2 715
S e 3>147 382

348 %¢e6e2 715
S e 5314738 Z

(e) Depth first search solution

(d) Breadth first search solution

Figure 4.11: A sample of 17 clues Sudoku puzzles with four results

60

Figure 4.12 shows that Restricted Boltzmann Machine solution is different

from the other two solutions and for this, the Message Passing algorithm failed to

solve.

000O0OCODCO0OO0OOZ1
S 00400000
000800000
021500000
07 0000e 00
00000030
4 000 0O0GEB 00
3 00070000

00 e 020000

(a) Sudoku problem

768 39%5421
1 %86 2387
2348175%5¢6
21536748

68735421

53241¢7885
1478%235¢6
62 154357E

8132 49%¢15

4 73289615
859591672 34
4 9 2 3518617
38586741852

6457812385
4 5 715 3862
300070000

0 0e 020000

716528543

(c) Message passing failed

(b) Boltzmann solution

768 355421
519 4e¢e2 387
23481785 ¢
92153 e 7 48

7683 %5421
51 %46 2 387
2 34817%5¢6
521536748

87 32 45%¢€ 15

8732 45%%61S5
6457812389
4 571538 e 2
3526781854

&4 578123685
4 571538 6 2
3526 781°54

186 % 2453573

18e % 24573

(e) Depth first search solution

(d) Breadth first search solution

Figure 4.12: A sample of 17 clues Sudoku puzzles with one-failed results

61

Figure 4.13 illustrates that two algorithms cannot reach to the puzzle

the Restricted Boltzmann machine and the Message Passing

solution 1i.e.

algorithm.

ooo0coO0O0OO0T7TI1
S 00000060
020000000
o4 070000

230000400
oo00S 10000
70 0& 00008

ooo0300200
100000000

(a) Sudoku problem

34586 3971
58 1253573 6 4
72648 5%5 31

4 56 2 3 5871
18745 36 2
3271866854675

& 5487 3125

&6 54873125
8§ 31528457

8 30000400
00510000
7006 00008

275510000
700 e 000O0B8

oo0oo03002200
100000000

o003 00200
100000000

(c) Message passing failed

(b) Boltzmann failed

4 56 2 3 5871

4 36 2 3 5871

51874535 3 6 2
3271685489

1874536 2
3271685485

& 94873125
8315320816457

& 94873125
83153286457

275 9%146 83
74 2 e 51 8% 3 8
=& 5 387214

27351468 3
7426 519% 38
56 9% 3872114

183452 7°%5¢6

183 45272%5¢6

(e) Depth first search solution

(d) Breadth first search solution

Figure 4.13: A sample of 17 clues Sudoku puzzles with two failed results

62

4- Completeness: if the algorithm was able to find all solutions for the Sudoku
regardless the execution time, then it is said to be complete. This study shows
the Depth first search and Breadth first search algorithms is complete since it

was able to solve all Sudoku puzzles. In addition, the other algorithms are not.

4.6. Descriptive Statistics:

Descriptive statistics are used to provide simple summarization about the
sample and the measures. Together with simple graphics analysis, they form the
basis of virtually every quantitative analysis of data. It simply describes what the
data shows. With inferential statistics, and trying to reach conclusions that extend
beyond the immediate data alone when analyzing Mean value and Standard
Deviation value after sorted data (the time taken to solve puzzles) for all

algorithms and comparing as follows:-

4.6.1. Restricted Boltzmann Machine time solving:

The algorithm solves a set of Sudoku puzzles with a Mean value of
2.818048x10"" seconds and Variation in solving time was also small with a
Standard Deviation value of 3.182617x10 seconds, which means that most of

the numbers are very close to the average as show Figure 4.14.

0012 : :
—@— REM time
- Mlearm

0.01 - O Standard Deviation i
T

£ 0.005 _
S
=
=
LN

é 0.005]
=
2

= 0.004 | _
o

0.002 _

D 1 1 1 1 1 1 1 1
] 2 4 G g 10 12 14 16 18

Testing of total 20 puzzles

Figure 4.14: The solving time for restricted Boltzmann machine

63

4.6.2. Message Passing time solving:

Figure 4.15 shows that Message Passing algorithm solves a set of Sudoku
puzzles with a Mean value of 5.274069x10*'° seconds and a high Standard
Deviation value of 4.145572x10*'? seconds that the numbers are spread out (from

the Mean).

10

® 10
1 —@— P time
10k - Mlearm |
O Standard Deviation
9_ —
= 8 -
=
=
2 Tr .
o
@ B =
E
£l m 1
=
= ap O i
A
3_ —
2_ —
1 - —
1 1 1 1 1 1 1 1
a 3 4 =) 5 7 g 9 10 11

Testing of total 20 puzzles

Figure 4.15: The solving time for message passing

4.6.3. Breadth First Search time solving:

In this case, the Breadth First Search algorithm solves a set of Sudoku
puzzles with a Mean value of 9.697644x10*! seconds and here a high Standard
Deviation value of 1.100881x10** seconds which means that the numbers are

spread out as show in Figure 4.16.

64

Solution times (seconds)

300

=250

200

150

100

S0

—@— BFS time
- Mearm

O Standard Deviation E

1 1 1 1
= 10 12 14 1G5 18 20
Testing of total 20 puzzles

Figure 4.16: The solving time for breadth first search

4.6.4. Depth First Search time solving:

seconds which means that the numbers are spread out as show in Figure 4.17.

Salution times {seconds)

The algorithms solves a set of Sudoku puzzles with a Mean value of

5.370067x10 seconds and a high Standard Deviation value of 1.004221x10%!

40

35

—@— DF = time

earm

O Standard Deviation

10 12
Testing of total 20 puzzles

Figure 4.17: The solving time for depth first search

65

4.7. Statistical Analysis:

Section (4.3) gives a comparison between the algorithms for solving time
point of view. Because test data was random numbers, we can use the statistical
analysis on testing data to determine the underlying probability distribution of the
data by comparing it using a probability density function after taken approximate
integral that includes what computational limitations were present and how this

affected the results.

In equation 4.1 the probability density function for a normal distribution

(Gang, et al., 2013) with Mean p, Standard Deviation o, and variance 62 is

MNP
= —_— 20
fxmo)= e 4.1

Because density function, has the property that it integrates close to one. Its
integration property will be used to conclude the results obtained in terms of the

solving time as cumulative distribution function as below.

4.7.1. Cumulative distribution for Restricted Boltzmann Machine:

Density function has the property that it integrates equal to 0.9992 and
attempt get the best the cumulative distribution function (CDF) as show in

Figure 4.18.

= mm e Cymulative distribation for RBER

BoDomo N

-
]
T

1

Ectimate cdf

0.6 B

0.4 B

0.2 F B

D 1 1 1 1 1 1 1 1
a 2 4 =1 =] 10 12 14 = 12

Testing of total 20 puzzles

Figure 4.18: Cumulative distribution for RBM
66

Estimate cdf

It is clear that the distribution has a constant probability function, since
the time taken to reach the solution occurs regularly. If the variable, time taken
to solve the puzzle, is a random variable with a uniform distribution, and the
integration represents the area below the curve that expresses the sum of all
possibilities, so that its integral approaches 1 as given in Figure 4.18. In section
4.6.1, it was discussed that RBM has a small Standard Deviation value of
3.182617x10"° seconds. This means that most of the values of the time taken to

solve the puzzle are very close to the average value as shown in Figure 4.14.

4.7.2. Cumulative distribution for Message Passing:

Here the density function has the worst property because it integrates
equal to 0.1813 and it is far from one. The cumulative distribution explains how
the original data (time taken to solve puzzles) are spare out form each other as

show in Figure 4.19.

0.1814 F

== mm e Cymulative distribotion for MP -
0.1814 P b

01814 | - .
01814 | - i
01814 F o |
01814 | - .
01814 | > .
01814 | - .
01814 F - _
01814 | P .
01814 | .

1 1 1 1 1 1 1 1 1 1
o 1 2 = A4 5 5 v = =] 10 11
Testing of total 20 puzzles

Figure 4.19: Cumulative distribution for MP

In this Figure 4.19, it can be seen that the distribution for the time taken to
solve the puzzle is irregular. In other words, the time taken does not change in
an orderly manner. Figure 4.19 shows that the distribution is not limited and

when integrated is not close to 1 which means that the deficiency of this

67

algorithm in solving the puzzle. Earlier, in section 4.6.2 we show that the
message passing has highest Standard Deviation value i.e. 4.145572x10+!°

seconds and the values are spread out from the Mean.

4.7.3. Cumulative distribution for Breadth First Search:

Density function has a good property that it integrates equal to 0.3029 it
is far from one and attempt get the cumulative distribution similar Message

Passing algorithm as show in Figure 4.20.

0.35 —| == mm e Cymulative distribution for BFS | -~ .

0.34 |- Ta i
0.33 | g -
o3zt g -
0.31 | ~ -

0.3 - —
0.29 - —

Ectimate cdf
\

028 - =
0.27 | e =

026 s =

0.25 ™ —

1 1 1 1 1 1 1 1 1
u] 2 A4 5 = 10 12 14 15 18 20
Testing of total 20 puzzles

Figure 4.20: Cumulative distribution for BFS

Figure 4.20 shows that the distribution is also irregular for the breadth first
search algorithm. The time taken to solve the puzzle is not changing in regular
manner. However; when comparing the values of time taken to solve, standard
deviation, and the integration with those obtained for message passing we can
see that BES is better. It is equal to 0.3029 BSF whereas; 0.1813 in the case of
message passing. In section 4.6.3, it was given that the BFS has a high Standard
Deviation value of 1.100881x10*? seconds that ensures the distribution given in

Figure 4.16.

68

4.7.4. Cumulative distribution for Depth First Search:

Figure 4.21 the density function has a Better property and the cumulative

distribution explains that it integrates equal to 0.7873.

Estimate cdf

0.8 - _
o7+ - |

D_Ei—__-:-|"‘_ _

| = omm e Comulative distribution for DFS
1 1 1 1 T T T T T

] 2 4 5] =] 10 12 14 16 15 20
Testing of total 20 puzzles

Figure 4.21: Cumulative distribution for DFS

In this case, the probability density function can be described as a
histogram, which represents the relative frequencies within the fields of the
graphical results. Figure 4.21 shows that for the puzzles from 9 to 17 the
distribution is regular, and hence can be said that the algorithm performance is
stable. Figure shows that for puzzle from 1 to 8 and from 18 to 20 has irregular
distribution. With these distributions, the DFS came the second in rank after
the RBM. In section 4.6.4, the standard deviation for the DFS was discussed
where it shows that the value for the DFS is 1.004221x10*' seconds that

reflects the distribution given in Figure 4.17.

69

Chapter Five

Conclusions and Future work

5.1. Conclusion:

This chapter presents the conclusions drawn from the research and raises the
suggestions for future work. The study is primarily concerned with Searching
Algorithms i.e. Breadth First Search and Depth First Search for Problem Solving
mechanisms in the field of artificial intelligence. In addition, Restricted
Boltzmann Machine as a kind of neural network and Message passing Algorithm
have been studied and applied for problem solving. In order to determine their
ability for problem solving so that their performance, significance, and hence a
comparison between them can be made, 9x9 Sudoku puzzles is used as a case
study in this research. Java programming language is used to code these different
algorithms so that the previous mentioned parameters found. For each of these
four algorithms, two main parameters were examined i.e. the solving time and

successfulness.

The results show that the Restricted Boltzmann Machine algorithm is the
best among all four algorithms covered in this study. The time taken by RBM to
solve the 9x9 Sudoku puzzles is the shortest time equal to 0.0118 sec with a
solving rate of 18 out of 20 puzzle. On the other hand, the DFS comes in the
second position with a solving time longer than RBM and solving all puzzles. The
restricted Boltzmann machine presents the lowest standard deviation values
equals to 3.182617x107 second and with a higher probability density function
approaches 1 i.e. 0.9992 Regarding the Depth first search algorithm the standard
deviation value is 1.004221x10*! second and the probability density function is
0.7873 which means that the solving time differs based on the problem to be

solved itself.

The message passing algorithm shows the worst results from the solving
time point of view and the unsuccessfulness to solve the puzzles 11 out of 20.

O+10

This algorithm came with a standard deviation equals to 4.145572x1 second

and a cumulative probability density function of 0.1813.

71

5.2. Future Work:

As a future work, different searching algorithms might be applied as:

1- Uniform-Cost Search
2- Depth-Limited Search
3
4- A* algorithm
5

6- Minimax algorithm

Iterative Deepening Search

Genetic algorithm

In this research, a 9x9 Sudoku puzzle is chosen as a study case, as future
work, different types of Sudoku puzzles can be chosen. Killer Sudoku puzzle,
Even Sudoku puzzle or X Sudoku puzzle, which is known as diagonal puzzle,
different data structure might be used with a puzzles that can be adopted in the

future.

Moreover a different kinds of puzzles such as N-Queen and Travelling
Salesman Problem, Rubik’s Cube are kinds of puzzles that may be applied with

the previous mentioned data structures and searching algorithms.

72

References

Adedapo O, A., Ganiyu R, A., Olabiyisi S, O., Omidiora E, O., & Sijuade A, A. (2015).
Procedural Cognitive Complexity Measure of Tree Search Algorithms.
International Journal of Advanced Research in Computer Science and Software
Engineering, 7, pp. 31-35.

Akanmu T, A., Olabiyisi S, O., Omidiora E, O., Oyeleye C, A., Mabayoje M, A., &
Babatunde A, O. (2010). Comparative Study of Complexities of Breadth- First
Search and Depth-First Search Algorithms using Software Complexity
Measures. the World Congress on Engineering 2010, I. London, U.K.

Andre, M., Florent , K., Eric W., T., & Lenka, Z. (2014, Jun 17). Sparse Estimation
with the Swept Approximated Message-Passing Algorithm. Proceedings of the
32nd International Conference on Machine Learning, vI, pp. 1123-1132.

Andrea, M., Federico, R.-T., & Guilhem , S. (2007, Sep 11). Solving Constraint
Satisfaction Problems through Belief Propagation-guided decimation. Artificial
Intelligence (cs.Al); Disordered Systems and Neural Networks (cond-mat.dis-
nn).

Arunkumar , B., & Komala, R. (2015, July 7). Applications of Bipartite Graph in
diverse fields including cloud computing. International Journal Of Modern
Engineering Research (IJMER)(5).

Asja ., F., & Christian , 1. (2014, January). Training restricted Boltzmann machines: An
introduction,. Pattern Recognitation archive journal, 47(1), 25-39.

Baptiste, W., & Jean , H. (2014). Camera-based Sudoku recognition with Deep Belief
Network. Soft Computing and Pattern Recognition (SoCPaR), 2014 6th
International Conference (pp. 83 — 88). Fribourg: IEEE.

Beamer, S., Krste , A., & David, P. (2012). Direction-Optimizing Breadth-First Search.
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC). Salt Lake City, Utah: IEEE.

Behrooz , P. (2009). Motivating Computer Engineering Freshmen Through
Mathematical and Logical Puzzles. TRANSACTIONS ON EDUCATION. VOL.
52, NO. 3. IEEE.

Caroline , A., & Jossy , S. (2014, Jul). Density Evolution for SUDOKU codes on the
Erasure Channel. Funded in part by the European Research Council under ERC
grant agreement 259663 and by the FP7 Network of Excellence NEWCOM##
under grant agreement 318306. University of Cambridge.

Cecilia , N., & Luciana, A. (2013). Modelling Sudoku Puzzles as Block-world
Problems. [International Journal of Computer, Control, Quantum and
Information Engineering, 7(8), pp. 487- 493.

73

Charles, E. (2010). A Work-Efficient Parallel Breadth-First Search Algorithm (or How
to Cope with the Nondeterminism of Reducers). the twenty-second annual ACM
symposium on Parallelism in algorithms and architectures conference, (pp. 303-

314).

Chiung-Hsueh , Y., Hui-Lung , L., & Ling-Hwei, C. (2009, November 13). An efficient
algorithm for solving nonograms. © Springer Science+Business Media, LLC
2009.

David, D., Arian , M., & Andrea, M. (2009, September 11). Message-passing
algorithms for compressed sensing. The National Academy of Sciences of the
United States of America (PNAS).

David, H., & Steven, C. (2013). EA-EMA Optimization Applied to Killer Sudoku
Puzzles. Conference Organized by Missouri University of Science and
Technology (pp. 58 — 64). online at : www.sciencedirect.com.

Duane, M., Michael , G., & Andrew , G. (2011). High Performance and Scalable GPU
Graph Traversal. Technical Report CS-2011-05, University of Virginia,
Department of Computer Science.

Farhad , S., Bahareh , S., & Golriz , F. (2012, September). A New Solution for N-
Queens Problem using Blind Approaches: DFS and BFS Algorithms.
International Journal of Computer Applications (0975 — 8887), Volume 53—
No. 1.

Ferozuddin, R., & Khidir , M. (2011). Applications of Graph Theory in Computer
Science. Computational Intelligence, Communication Systems and Networks
(CICSyN). IEEE Xplore.

Frank R, K., Brendan J, F., & Hans-An. (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2), 498-519.

Gang, Z., Hugh , S., Lixin , W., & Alistair, D. (2013, DECEMBER 2013). A Statistical
Assessment of the Performance of FSV. ACES JOURNAL, 28(12), 1179-1186.

Geoffrey E, H., Simon, O., & Yee-Whye, T. (2006, July). A fast learning algorithm for
deep belief nets. Neural Computation, 18(7), pp. 1527-1554.

Heiko, B. (2008). Passing messages to lonely numbers. Computing in Science and
Engineering, 2(10), pp. 32 — 40.

Hugo, L., & Yoshua , B. (2008). Classification using Discriminative Restricted
Boltzmann Machines. Appearing in Proceedings of the 25 International
Conference on Machine Learning. Helsinki, Finland.

Jonathan S, Y., William T, F., & YairWeiss. (2005, July). Constructing free energy
approximations and generalized belief propagation algorithms. [EEE
Transactions on Information Theory, 51(7).

74

Jossy , S. (2014). The Role Model Estimator Revisited. University of Cambridge,
Funded in part by the European Research Council under ERC grant agreement
259663 and by the FP7 Network of Excellence NEWCOM# under grant
agreement 318306.

Jossy , S., & Joned , S. (2015, Apr 16). An investigation of SUDOKU-inspired non-
linear codes with local constraints. University of Cambridge, U.K.,
arXiv:1504.03946v2 [cs.IT].

Jussi, R. (2010). Heuristic Planning with SAT: Beyond Uninformed Depth-First Search.
Australasian joint conference on artificial intelligence; Al 2010: advances in
artificial intelligence. Berlin: by Springer.

Kristian , K., Babak , A., & Sriraam , N. (2009). Counting Belief Propagation.
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence (UAI2009). Uncertainty in Artificial Intelligence.

KyungHyun , C., Tapani, R., & Alexander, 1. (2010). Parallel Tempering is Efficient for
Learning Restricted Boltzmann Machines. the International Joint Conference on
Neural Networks. Barcelona, Spain.

Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann
machines and deep belief networks. Neural Computation Journal, 20(6).

Lijuan , L., Martin , W., & Wen-mei, H. (2010). An Effective GPU Implementation of
Breadth-First Search. Design Automation Conference (DAC) 47th ACM/IEEE
(pp. 52 - 55). IEEE.

Marylou , G., Eric W., T., & Florent, K. (2015, Jun 15). Training Restricted Boltzmann
Machines via the Thouless-Anderson-Palmer Free Energy. Advances in Neural
Information Processing Systems, 28, 640--648.

Mehmet , D., Kamer , K., Bora, U., & Umit , V. (2013, Mar 6). GPU accelerated
maximum cardinality matching algorithms for bipartite graphs. Distributed
Parallel, and Cluster Computing (cs.DC).

Min-Quan , J., Chiung-Hsueh, Y., Hui-Lung , L., & Ling-Hwei , C. (2009). Solving
Japanese puzzles with logical rules and depth first search algorithm. the Eighth

International Conference on Machine Learning and Cybernetics. 5, pp. 2962-
2967. IEEE.

Montufar, G., & Ay, N. (2011). Refinements of universal approximation results for deep
belief networks and restricted Boltzmann machines. Neural Computation

Journal.

Nate , D., Jose, B., Veit , E., & Jonathan , S. (2013, May 8). An Improved Three-
Weight Message-Passing Algorithm. arXiv:1305.1961v1 [cs.Al].

75

Nathan, R. (2013). An Argument for Large-Scale Breadth-First Search for Game
Design and Content Generation via a Case Study of Fling! AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment; Ninth Artificial
Intelligence. Organizing agency, location.

Navdeep, J., & Geoffrey, H. (2011). Learning a better representation of speech
soundwaves using restricted boltzmann machines. Speech and Signal Processing
(ICASSP) 2011 IEEE International Conference (pp. 5884-5887). IEEE.

Olusegun, O. A., Babatunde, A. N., Omotehinwa, T. O., Aremu, D. R., & Balogun, B.
F. (2014, May — June). An Appropriate Search Algorithm for Finding Grid
Resources. [International Journal of Emerging Trends <& Technology in
Computer Science (IJETTCS), 3, Issue 3.

Rina , D., & Robert, M. (2007, January 17). AND/OR search spaces for graphical
models,. Artificial Intelligence(171), pp. 73—106.

Rong , Z., & Eric , A. (2009). Combining Breadth-First and Depth-First Strategies in
Searching for Treewidth. The twenty-First International Joint AAAI Conferece
on Artifical Intelligence, (pp. 641-645).

Ruslan , S., Andriy, M., & Geoffrey E., H. (2007). Restricted Boltzmann machines or
collaborative filtering. In Proceedings of the 24th international conference on
Machine learning (pp. 791-798). New York, NY, USA: ACM: (ICML 2007).

Ruslan, S., & Geoffrey E., H. (2012). An efficient learning procedure for deep
Boltzmann machines. Neural Computation(24), pp. 1967-2006.

Russell, S., & Norvig, P. (2010). Chapters 3 and 4. In Artificial Intelligence: A Modern
Approach (Vol. 3rd Edition).

Russell, S., & Norving, P. (2010). Chapters 2. In Artificial Intelligence — A Modern
Approach (Vol. 3rd edition). New Jersey: Pearson.

Rutuja, U., & Payal , S. (2014). A Review on Parallelization of Node based Game Tree
Search Algorithms on GPU. (IJCSIT) International Journal of Computer
Science and Information Technologies, 5(6), pp. 7385-7388.

Sanjay , J., & Chander , S. (2014). Mathematical and C Programming Approach for
Sudoku Game. Journal of Game Theory 2014, 3(1), pp. 1-6.

Scott, K., Ethan, B., & Wheeler, R. (2012). Abstraction-Guided Sampling for Motion
Planning. Proceedings of the Fifth Annual Symposium Combinatorial Search.
Association for the Advancement of Artificial Intelligence (www.aaai.org).

Stefano, E., Carla P, G., Ashish, S., & Bart, S. (2013, Feb 2). Taming the Curse of

Dimensionality: Discrete Integration by Hashing and Optimization.
arXiv:1302.6677vl1 [cs.LG].

76

Tanya, G. R., Martin, J. W., & Shankar, S. S. (2008). Convergence Analysis of
Reweighted Sum-Product Algorithms. IEEE TRANSACTIONS ON SIGNAL
PROCESSING, 56, pp. 4293-4305.

Taruna , K., Preeti, Y., & Lavina. (2015, September - October). Study Of Brute Force
and Heuristic Approach to solve sodoku. International Journal of Emerging
Trends & Technology in Computer Science (IJETTCS), 5(2), pp. 052-055.

Todd K, M., & Jacob H, G. (2006). Multiple constraint satisfaction by belief
propagation: An example using sudoku. Adaptive and Learning Systems (pp.
122 — 126). IEEE Mountain Workshop on 2006 .

Todd, K. M., Jacob, H. G., & Joseph, J. K. (2009, Aprial). Sinkhorn Solves Sudoku.
IEEE Transactions on Information Theory, 55(4), pp. 1714- 1746.

WebSudoku. (2009, April). Sudoku for Webmasters. Retrieved Feb 24, 2016, from
http://www free-sudoku.com/webmaster.php

Wolfgang Maass. (2014, May). Noise as a Resource for Computation and Learning in
Networks of Spiking Neurons. Proceedings of the IEEE, 102(5), pp. 861-880.

Xiuqin , D., Junhao, L., & Guangqing, L. (2013, March). Research on Sudoku Puzzles
Based on Metaheuristics Algorithm. Journal of Modern Mathematics

Frontier(2).

Zhengbing, B., Fabian , C., William G, M., & Geordie, R. (2010). The Ising model:
teaching an old problem new tricks. D-Wave Systems Technical Report.

77

The appendix A

Boltzmann Source code

package simulated.algorithms.sudokuimplementation;
import simulated.algorithms.TemperatureFunction;
import boltzmann.Sudoku;

import boltzmann.SudokuSimulation;

private static final double STOP ENERGY = 2.0;

public class DefaultSudokuSimulation extends SudokuSimulation {

public DefaultSudokuSimulation (double randomCoefficient,
TemperatureFunction energyFunction, Sudoku initialSudoku)

{ super (randomCoefficient, energyFunction, initialSudoku); }
protected Sudoku getNeighbour (Sudoku currentSudoku)

{ return currentSudoku.getNeighbour () ;}

protected boolean optimalChanged (Sudoku current, double currentEnergy,
long iterations)

{ if (currentEnergy == STOP_ ENERGY)
{ int emptyCount = 0;

for (boolean[] notEmpty : current.getInitialFillMask())

for (boolean b : notEmpty) {
if (!'b) { emptyCount++; } } }

System.out.print (""); emptyCount); current.print();
current.WriteFiles();

return true; }
if (current.isValid())
current.print () ;

return false; }

78

Message passing Source code

package message passing;

import java.io.BufferedReader;

import java.io.BufferedWriter;

public class SudukuPGM ({

public static int PROPAGATION Size = 0;

public static void main(String args[]) {
SudukuPGM p = new SudukuPGM(); p.GetSolution(); }
public void GetSolution () {

Date start = new Date(); SudukuPGM sudoku = new SudukuPGM () ;
SudukuPGM. PROPAGATION Size = i;

// initialize the matrix, S, N, M
public void initialMatrix () { dincompleteCount = 81; int index = 0;

for (int 1 = 0; 1 < 27; i++) { for (int j = 0;
N Current[i][j] = -1; N[1i][j] = -1; }

for (int i = 0; i < 9; i++) { for (int § = 0; 3 < 9; F++) {
Slindex] = matrix[i][]J];

int boxN = g
M[index] [1] = j + 9
addToN (index, j + 9

etBoxNumber (i, j); M[index][0] = 1i;
; M[index] [2] = boxN; addToN (index, 1i);
) ; addToN (index, boxN) ;

if (S[index] != 0) { modifyN Current (index):; }
for (int v = 0; v < 9; v++) { // initialize the probability of
for (int C = 0; C < 3; C++) {
Q[M[index] [C]] [index] [v] = Math.loglO(1);

R[M[index] [C]] [index] [v] = Math.loglO(1l); 1}}
index++;}}}

public double permutate(int n, String pre, String last, Stringl]
position,

double sum, int m) {if (last.length() == 0) { double product =
Math.logl0(1);

79

public void getProbabilityForQ (int indexS) ({

for (int C = 0; C < 3; C++) { for (int v = 0; v < 9; v++)
{Q[M[indexS] [C]] [indexS] [v] = Math.loglO(1); }

for (int C other = 0; C other < 3; C other++) { if (C other != C)
{

getProbabilityFromEachConstraints Q(indexsS,
M[indexS] [C],M[indexS] [C other]); } }

for (int 1 = 0; 1 < 9; i++) { if (Q[M[indexS][C]][indexS][i] >
Math.logl0(0)) { vCount++; } }

if (vCount != 0) { for (int 1 = 0; 1 < 9; 1i++) {
O[M[indexS] [C]] [indexS] [1] = Q[M[indexS][C]] [indexS] [1]-
Math.loglO (vCount) ; } }}

public void getProbabilityFromEachConstraints Q(int index, int m,int
realConstraintNum) {

int num = 0; while (N _Current[realConstraintNum] [num] != -1) {
int indexS = N Current[realConstraintNum] [num];

Q[m] [index] [S[indexS] - 1] = Math.loglO(0); num++; } }

public void getProbabilityFromEachConstraints PRODUCT (int index,int
constraintNum) {

// get the number of values in the constraints
while (N_Current[constraintNum] [num] != -1) {
int indexS = N Current[constraintNum] [num];// index of S
Plindex] [S[indexS] - 1] = Math.logl0(0); numt+; }

public void modifyN Current (int index) {

incompleteCount -= 1; for (int C = 0; C < 3; C++) {
addToN Current (M[index] [C], index); }o}

public double sum log(double a, double b) ({

if (a == Double.NEGATIVE INFINITY) { return b; } else if (b ==
Double. NEGATIVE_INFINITY) {

return a; } else { 1f (a > b) { X = a; y = Db; }
double decide = Math.pow (10, x - y);

if ((decide + 1) == Double.POSITIVE INFINITY) {// overflow }
else { decide += 1; ¢ =y + Math.loglO(decide); return c; }

80

Breadth First Search Source code

package breadth first search;

import java.util.Queue;

public class SudokuSolver { SudokuField f

public Guess (int x, int val)

this.val = val; } }

int vy,

public SudokuSolver (String file,int count)

this.fileName = file;

public static void GetSolution|()
"./sudokul7.txt";

{ this.x =

load(file, count) ;

= new SudokuField():;

x; this.y = y;

throws IOException {

sudokuCounter++; }

{ String file =

while (counter < 10) { try { SudokuSolver s = new
SudokuSolver (file, sudokuCounter) ;
s.solve(); end = System.nanoTime () ;
System.out.println("time: "+ (end-start) +"ns\n\n"); }

catch (Exception e)
void main(String[] args)
SudokuSolver.GetSolution(); }
check = false; f.print (check);
val 1; check = true;

private boolean solve(int startX,
recursions++;

{ System.out.println(e);
throws IOException {
private void solve()
solve (0,
f.print (check) ;}

int starty,

} try { public static

{ boolean

0,); // x 0, y O,

int startval) {

Queue<Guess> candidates = new Queue <> (); int x, y, val;
for (x = startX; x < 9; x++) { y = (x == startX) ? startyY 0;
for (; y < 9; y++) {
if (f.getVal(x, y) == 0) { val = (x == startX && y == starty)
? startVal 1;
for (; val <= 9; wval++) { boolean free = f.check(x, vy, val);
if (!free) continue; Guess guess = new Guess(x, y, val);
candidates.add (guess) ; }
if (candidates.size() == 1) {Guess guess = candidates.remove () ;

f.set (guess.x,

candidates.clear(); } else if

for (int i
Guess guess

return false; } else {
0; i--) |

SudokuField backup =

f.set (guess.x,
solve (guess.x,

guess.val);
guess.val) ;}

guess.y,
guess.y,

81

guess.y,
(candidates.size ()

guess.val);

== 0) {
candidates.size() - 1; i >=
= candidates.remove () ;

new SudokuField(f);

boolean result =

private void load(String fileName, int lineNum)

(BufferedReader br
{

try

throws IOException {

new BufferedReader (new FileReader (fileName)))

int count=0; for (int a = 0; a < 9; a++) { for (int b = 0; b <
9;b++) {int num= (int)numbers|[count]-'0'; f.set (a,b,num);

f.set start sudoku(a, b, num); count++; } checkAll (); return;
} counter++; }} catch (IOException e) { e.printStackTrace();

b}

int s x = x / 3; // square id in x direction, starting at O

int s x off = s x * 3; // square x offset

int s y =y / 3; int s y off = s y * 3; // square y offset

for (int 1 = 0; 1 < 3; i++) { for (int j = 0; Jj < 3; J++) { int
i pos =1 + s x off;

int j pos = j + s_y off; if (i pos != x && Jj pos !=y &&

f.getval (i pos, j pos) == val) {

System.out.printf ("check: x:%d, y:%d, val:%d\n", i pos, J pos,

f.getVal (i pos, j pos));

private void checkRange (int x) {
IllegalArgumentException () ;

private void checkValue (int val)
IllegalArgumentException () ;

Depth first search Source code
package depth first;

import java.util.Stack;

public class depth first search {
class SudokuState {

public SudokuState(int cellnum ,

0; 1< 9 ;
cellnum ;

{ for(int i
this.cellnum

i++)

this.board

board ; }

public int[] getPossiblity() {

return false; }

} return true; }
if (x < 0 || x > 8) { throw new
}
{ if (val < 1 || val > 9) { throw new

int board[][])

{ this.possiblity[i] = true ;

82

int num = numberofchoices(); if(num ==) return null ; int
pchoices[] = new int[num] ;

for(int 1 = 0 ; 1 < 9 ; i++) { if(possiblity[i] == true) {pchoices[]]
= i+1 ; Jj++ ;} return pchoices ;}

public int numberofchoices(){ int 7 = 0 ; for(int i = 0 ; i < 9 ;
i++) { 1if(possiblity[i] == true)

return j ; }
public void setPossiblity(boolean choicestate , int choice) {
this.possiblity[choice-1] = choicestate ; }

public int getcellnum() {return this.cellnum ; }

public void setBoardCell(int val , int cellnum) {

int row = (cellnum-1)/9 ; int col = cellnum%9 - 1; if(col == -1)
this.board[row] [8] = val ;

else this.board[row] [col] = val ; }

public int getBoardCell(int cellnum)
public int[][] getBoard() { return this.board; }

private boolean possiblity[] = new boolean[9] ; private int board[][]
= null ;

public void calculatePossiblities(SudokuState state , int board[]I[])

{ int cellnum = state.getcellnum() ; int row = (cellnum - 1) /
board.length ;

int col = (cellnum % board.length) - 1 ;

if(col == -1) col = 8 ; rowPossiblities(state , board , row) ;
colPossiblities(state , board , col) ;

subPossiblities(state , board , row , col) ; }

public void rowPossiblities(SudokuState state , int board[][] , int
row)

for(int 1 = 0 ; i < board.length ; i++) { 1if(board[row] [i] != -1)

state.setPossiblity(false, board[row] [i]); } }

public void colPossiblities(SudokuState state , int board[][] , int
col)

{for(int i = 0 ; 1 < board.length ; i++) {if(board[i][col] !'= -1)

83

state.setPossiblity(false, board[i][col]) ; } }

public void subPossiblities(SudokuState state , int board[][] , int
row , int col)

{ 41if(row < 3 && col < 3) {for(int i =0
=0 3 <3)

; 1 <3 ; i++) for(int j

if(board[i] [j] !'= -1) state.setPossiblity(false , board[i][]]) =
return ; }
public int[][] solveSudoku(int board[][]) {

Stack<SudokuState> statestack = new Stack<SudokuState>();

SudokuState svar = new SudokuState (nextemptycell (board),
board) ;

while(true) { calculatePossiblities(svar , board) ; if(

svar.numberofchoices () == 0)
{ svar = statestack.pop(); svar.setPossiblity(false ,
svar.getBoardCell (svar.getcellnum())) ;
svar.setBoardCell(-1 , svar.getcellnum()) ; board =
svar.getBoard() ; } Else {
svar.setBoardCell (svar.getPossiblity () [0] , svar.getcellnum()) ;
statestack.push (svar) ; board = svar.getBoard() ;
1f(nextemptycell (board) == -1) break ; svar = new

SudokuState (nextemptycell (board), board) ; } } return board ;
}

public void printboard(int[][] board) {for(int i = 0 ; i <
board.length ; i++)

{ for(int j = 0 ; j < board.length ; j++) System.out.print(" "
+ board([i]1[j1):; } }
public void FinalSolution() { int [][] original puzzle = new
int[9][9];

int[][] problem = new int[9][9]; try (BufferedReader br = new
BufferedReader (new FileReader (fileName))) {while ((line =
br.readLine()) !'= null) { char[] numbers = line.toCharArray();

depth first search ssolve = new depth first search()

’

int sboard[][] = ssolve.solveSudoku(board) ; }
System.out.println(e); }

public static void main(String[] args) { depth first search d =
new depth first search(); d.FinalSolution(); b}

84

Matlab Source code

Exacusion time
bt = [];

Min time = min(bt)
Max time max (bt)

figure (1)

plot (bt,'--rs', 'LineWidth',2, ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'g', ...
'MarkerSize',10)

xlabel ({'Testing of total 20 puzzles'});% Create xlabel

ylabel ('Solution times (seconds)');$% Create ylabel
legend ('RBM time');
figure (2)

plot(l:1length(bt),sort(bt),'-ob', 'LineWidth',2, ...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor','r', ...
'MarkerSize',10);

hold on;

Meam Boltzmann=mean (bt);

St = std(bt);%standard deviation

fprintf ('standard deviation for Boltzmann = %d\n Meam for Boltzmann =
$d\n',St,Meam Boltzmann) ;

plot (Meam Boltzmann, 'rs', 'LineWidth',2,...
'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'b', ...
'MarkerSize',15)

hold on;

plot (St, 'ok', 'LineWidth',1.5, ...
'MarkerEdgeColor', k",
'MarkerFaceColor','y', ...
'MarkerSize',10)
hold on;
xlabel ({'Testing of total 20 puzzles'});% Create xlabel
ylabel ('Solution times (seconds)');% Create ylabel
legend ('RBM time', "Meam', 'Standard Deviation', 'Location', 'NorthWest'):;

figure (3)
hist (bt,50);% a histogram are 50 intervalls.

xlabel ({'Solution times (seconds)'});% Create xlabel
ylabel ({'Occurences in testing of total 20 puzzles'});% Create ylabel
legend ('Histogram for RBM');

figure (4)

% % returns Exponential probability density function and Mean of
probability distribution

y = exppdf (bt,mean(bt));

plot (bt,y,'--ok', 'LineWidth',1.5, ...
'MarkerEdgeColor', 'b', ...
'MarkerFaceColor', 'm',

85

'MarkerSize',10)

xlabel ({'Testing of total 20 puzzles'});% Create xlabel
ylabel ({'pdf of the exponential distribution'});% Create ylabel
legend ('Probability density function for RBM');

figure (5)

xexp = 1:1.01:20;

[fbt bt] = ksdensity(bt,xexp, 'function','cdf');

% Cumulative Density Function

approximate integral =trapz(fbt)/length(bt)% returns the approximate

integral of fbt
plot (bt, fbt, '-.b', 'LineWidth"',4);
xlabel ({'Testing of total 20 puzzles'});% Create xlabel

ylabel ({'Estimate cdf'});% Create ylabel
legend ('Cumulative distribution for RBM');

86

The appendix B

The solutions for 17 clues Sudoku problems

Restricted Boltzmann Message Passing | Breadth First Search | Depth First Search
Machine
Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000010 000000010 000000010 000000010
400000000 400000000 400000000 400000000
020000000 020000000 020000000 020000000
000050407 000050407 000050407 000050407
008000300 008000300 008000300 008000300
001090000 001090000 001090000 001090000
300400200 300400200 300400200 300400200
050100000 050100000 050100000 050100000
000806000 000806000 000806000 000806000
Solution Solution Solution Solution
8905763214 693784512 693784512 693784512
436912875 487512936 487512936 487512936
127584639 125963874 125963874 125963874
963258417 932651487 932651487 932651487
578641392 568247391 568247391 568247391
241397586 741398625 741398625 741398625
389475261 319475268 319475268 319475268
652139748 856129743 856129743 856129743
714826953 274836159 274836159 274836159

87

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000021 000000021 000000021 000000021
500400000 500400000 500400000 500400000
000800000 000800000 000800000 000800000
021500000 021500000 021500000 021500000
070000600 070000600 070000600 070000600
000000030 000000030 000000030 000000030
400000800 400000800 400000800 400000800
300070000 300070000 300070000 300070000
006020000 006020000 006020000 006020000
Solution Failed Solution Solution
968735421 768395421 768395421 768395421
532416789 519862387 519462387 519462387
147892356 234817956 234817956 234817956
621543978 921536748 921536748 921536748
473289615 813249615 873249615 873249615
859167234 645781239 645781239 645781239
492351867 497153862 497153862 497153862
385674192 300070000 352678194 352678194
716928543 006020000 186924573 186924573

88

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
050200000 050200000 050200000 050200000
000030400 000030400 000030400 000030400
000000000 000000000 000000000 000000000
000601003 000601003 000601003 000601003
804000000 804000000 804000000 804000000
700000000 700000000 700000000 700000000
020305000 020305000 020305000 020305000
000000710 000000710 000000710 000000710
000040080 000040080 000040080 000040080
Solution Solution Solution Solution
456219378 459218637 459218637 459218637
182537469 281736459 281736459 281736459
9037864521 673459128 673459128 673459128
295671843 592671843 592671843 592671843
864923157 814593276 814593276 814593276
713458692 736824591 736824591 736824591
621385934 127385964 127385964 127385964
548792716 348962715 348962715 348962715
379146285 965147382 965147382 965147382

89

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000061 000000061 000000061 000000061
200700000 200700000 200700000 200700000
000800000 000800000 000800000 000800000
013060000 013060000 013060000 013060000
050400200 050400200 050400200 050400200
000000700 000000700 000000700 000000700
000010050 000010050 000010050 000010050
700000400 700000400 700000400 700000400
800000000 800000000 800000000 800000000
Solution Solution Solution Solution
578324961 574329861 574329861 574329861
236791845 286751349 286751349 286751349
149856327 139846572 139846572 139846572
913762584 413267985 413267985 413267985
657483219 957483216 957483216 957483216
482195736 628195734 628195734 628195734
394217658 342918657 342918657 342918657
761538492 761532498 761532498 761532498
825649173 895674123 895674123 895674123

90

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
705000000 705000000 705000000 705000000
000010400 000010400 000010400 000010400
200000000 200000000 200000000 200000000
040000205 040000205 040000205 040000205
000370000 000370000 000370000 000370000
000000090 000000090 000000090 000000090
680000100 680000100 680000100 680000100
000502000 000502000 000502000 000502000
000900000 000900000 000900000 000900000
Solution Failed Solution Solution
715249386 715429386 715429386 715429386
986713452 398615427 3908615427 398615427
234658917 268437519 264837519 264837519
847196235 847169235 847196235 847196235
129375864 000370000 952378641 952378641
563824791 000000090 136254798 136254798
685437129 680000100 689743152 689743152
491582673 000502000 471582963 471582963
372961548 000900000 523961874 523961874

91

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000071 000000071 000000071 000000071
900000060 900000060 900000060 900000060
020000000 020000000 020000000 020000000
004070000 004070000 004070000 004070000
030000400 030000400 030000400 030000400
000910000 000910000 000910000 000910000
700600008 700600008 700600008 700600008
000300200 000300200 000300200 000300200
100000000 100000000 100000000 100000000
Failed Failed Solution Solution
345863971 456239871 456239871 456239871
981257364 918745362 918745362 918745362
726489531 327168549 327168549 327168549
694873125 694873125 694873125 694873125
831526497 830000400 831526497 831526497
275910000 000910000 275914683 275914683
700600008 700600008 742651938 742651938
000300200 000300200 569387214 569387214
100000000 100000000 183492756 183492756

92

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000012 000000012 000000012 000000012
040050000 040050000 040050000 040050000
000009000 000009000 000009000 000009000
070600400 070600400 070600400 070600400
000100000 000100000 000100000 000100000
000000050 000000050 000000050 000000050
000087500 000087500 000087500 000087500
601000300 601000300 601000300 601000300
200000000 200000000 200000000 200000000
Solution Solution Solution Solution
568734912 598463712 598463712 598463712
149256873 742851639 742851639 742851639
723819645 316729845 316729845 316729845
872695431 175632498 175632498 175632498
435178269 869145273 869145273 869145273
916423758 423978156 423978156 423978156
394387526 934287561 934287561 934287561
651942387 681594327 681594327 681594327
287561194 257316984 257316984 257316984

93

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000012 000000012 000000012 000000012
050400000 050400000 050400000 050400000
000000030 000000030 000000030 000000030
700600400 700600400 700600400 700600400
001000000 001000000 001000000 001000000
000080000 000080000 000080000 000080000
920000800 920000800 920000800 920000800
000510700 000510700 000510700 000510700
000003000 000003000 000003000 000003000
Solution Solution Solution Solution
847356912 364978512 364978512 364978512
359421678 152436978 152436978 152436978
216978534 879125634 879125634 879125634
782635491 738651429 738651429 738651429
631794285 691247385 691247385 691247385
594182367 245389167 245389167 245389167
923847856 923764851 923764851 923764851
468519723 486512793 486512793 486512793
175263149 517893246 517893246 517893246

94

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
500400060 500400060 500400060 500400060
009000000 009000000 009000000 009000000
640020000 640020000 640020000 640020000
000001000 000001000 000001000 000001000
208000500 208000500 208000500 208000500
000500000 000500000 000500000 000500000
000090000 000090000 000090000 000090000
003000000 003000000 003000000 003000000
060003002 060003002 060003002 060003002
Solution Failed Solution Solution
582479163 512437869 512437869 512437869
379165428 389516247 389156247 389156247
641328795 647829135 647829135 647829135
594781236 435961728 435961728 435961728
278936541 298374516 298374516 298374516
136542879 173582943 176582394 176582394
825697314 726195483 721695483 721695483
913254687 953286471 953248671 953248671
467813952 864713592 864713952 864713952

95

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000021 000000021 000000021 000000021
503000000 503000000 503000000 503000000
600000000 600000000 600000000 600000000
000104060 000104060 000104060 000104060
700000500 700000500 700000500 700000500
000200000 000200000 000200000 000200000
000480300 000480300 000480300 000480300
010070000 010070000 010070000 010070000
200000000 200000000 200000000 200000000
Solution Solution Solution Solution
894516721 879543621 879543621 879543621
523743896 523716489 523716489 523716489
671928435 641829735 641829735 641829735
389154267 385194267 385194267 385194267
742869513 792638514 792638514 792638514
165237948 164257893 164257893 164257893
956481372 956481372 956481372 956481372
418372659 418372956 418372956 418372956
237695184 237965148 237965148 237965148

96

The solutions for 27 clues Sudoku problems

Restricted Boltzmann Message Passing | Breadth First Search | Depth First Search
Machine
Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
630000000 630000000 630000000 630000000
000500008 000500008 000500008 000500008
005674000 005674000 005674000 005674000
000020000 000020000 000020000 000020000
003401020 003401020 003401020 003401020
000000345 000000345 000000345 000000345
000007004 000007004 000007004 000007004
080300902 080300902 080300902 080300902
947100080 947100080 947100080 947100080
Solution Solution Solution Solution
639218457 639218457 639218457 639218457
471539268 471539268 471539268 471539268
825674139 825674139 825674139 825674139
564823791 564823791 564823791 564823791
793401020 793451826 793451826 793451826
218000345 218796345 218796345 218796345
000007004 352987614 352987614 352987614
080300902 186345972 186345972 186345972
947100080 947162583 947162583 947162583

97

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
360020089 360020089 360020089 360020089
000361000 000361000 000361000 000361000
000000000 000000000 000000000 000000000
803000602 803000602 803000602 803000602
400603007 400603007 400603007 400603007
607000108 607000108 607000108 607000108
000000000 000000000 000000000 000000000
000418000 000418000 000418000 000418000
970030010 970030010 970030010 970030010
Solution Failed Solution Solution
361725489 361524789 361524789 361524789
789361325 789361254 789361254 789361254
245894761 255897613 245879361 245879361
893157642 893157642 8903157642 8903157642
412683597 400603007 412683597 412683597
657249138 607000108 657942138 657942138
138976254 000000000 134795826 134795826
526418973 000418000 526418973 526418973
974532816 970030010 978236415 978236415

98

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
007256400 007256400 007256400 007256400
400000005 400000005 400000005 400000005
010030060 010030060 010030060 010030060
000508000 000508000 000508000 000508000
008060200 008060200 008060200 008060200
000107000 000107000 000107000 000107000
030070090 030070090 030070090 030070090
200000004 200000004 200000004 200000004
006312700 006312700 006312700 006312700
Solution Solution Solution Solution
387256419 387256419 387256419 387256419
462891375 469781325 469781325 469781325
519734862 512439867 512439867 512439867
123548967 123548976 123548976 123548976
758963241 758963241 758963241 758963241
694127583 694127583 694127583 694127583
831475296 835674192 835674192 835674192
275689134 271895634 271895634 271895634
946312758 946312758 946312758 946312758

99

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000000000 000000000 000000000 000000000
079050180 079050180 079050180 079050180
800000007 800000007 800000007 800000007
007306000 007306000 007306000 007306000
450708096 450708096 450708096 450708096
003502700 003502700 003502700 003502700
700000005 700000005 700000005 700000005
016030420 016030420 016030420 016030420
000000000 000000000 000000000 000000000
Solution Solution Solution Solution
341827569 345871269 345871269 345871269
279653184 279653184 279653184 279653184
865941237 861429537 861429537 861429537
197346852 197346852 197346852 197346852
452718396 452718396 452718396 452718396
683592741 683592741 683592741 683592741
734289615 738264915 738264915 738264915
916735428 516937428 516937428 516937428
528164973 924185673 924185673 924185673

100

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
001020900 001020900 001020900 001020900
080960010 080960010 080960010 080960010
400000057 400000057 400000057 400000057
008000401 008000401 008000401 008000401
000603000 000603000 000603000 000603000
209000800 209000800 209000800 209000800
740000005 740000005 740000005 740000005
020018060 020018060 020018060 020018060
005070000 005070000 005070000 005070000
Solution Solution Solution Solution
361725948 361725948 361725948 361725948
587964213 587964213 587964213 587964213
492831657 492831657 492831657 492831657
638259471 638259471 638259471 638259471
174683592 174683529 174683529 174683529
259147836 259147836 259147836 259147836
746396185 746392185 746392185 746392185
923518764 923518764 923518764 923518764
815472329 815476392 815476392 815476392

101

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
050800020 050800020 050800020 050800020
600010090 600010090 600010090 600010090
700000006 700000006 700000006 700000006
070020300 070020300 070020300 070020300
504000908 504000908 504000908 504000908
103080000 103080000 103080000 103080000
900070200 900070200 900070200 900070200
060090000 060090000 060090000 060090000
080103040 080103040 080103040 080103040
Solution Failed Solution Solution
459837421 359846127 359846127 359846127
638216795 642317895 642317895 642317895
712549836 718259436 718259436 718259436
876925314 876925314 876925314 876925314
524361978 524631978 524631978 524631978
193784562 193784652 193784652 193784652
941678253 935478200 935478261 935478261
365492187 060090000 461592783 461592783
287153649 080103040 287163549 287163549

102

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
040000050 040000050 040000050 040000050
001943600 001943600 001943600 001943600
009000300 009000300 009000300 009000300
600050002 600050002 600050002 600050002
103000506 103000506 103000506 103000506
800020007 800020007 800020007 800020007
005000200 005000200 005000200 005000200
002406700 002406700 002406700 002406700
030000040 030000040 030000040 030000040
Solution Solution Solution Solution
348267951 348267951 348267951 348267951
571943628 571943628 571943628 571943628
269185374 269185374 269185374 269185374
697651432 697351482 697351482 697351482
123874596 123874596 123874596 123874596
854329187 854629137 854629137 854629137
415798263 415798263 415798263 415798263
982436715 982436715 982436715 982436715
736512849 736512849 736512849 736512849

103

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
020030090 020030090 020030090 020030090
000007000 000007000 000007000 000007000
900208005 900208005 900208005 900208005
000800500 000800500 000800500 000800500
607000208 607000208 607000208 607000208
003102900 003102900 003102900 003102900
800605007 800605007 800605007 800605007
000309000 000309000 000309000 000309000
030020050 030020050 030020050 030020050
Solution Failed Solution Solution
728536491 128534796 128534796 128534796
315497682 365917432 365917482 365917482
964218735 974268185 974268135 974268135
291874563 241896563 241896573 241896573
647953218 697453278 697453218 697453218
583162974 583172914 583172964 583172964
879645127 819645347 819645327 819645327
152389346 752389611 752389641 752389641
436721859 436721859 436721859 436721859

104

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
080005000 080005000 080005000 080005000
000003057 000003057 000003057 000003057
000070809 000070809 000070809 000070809
060400903 060400903 060400903 060400903
007010500 007010500 007010500 007010500
408007020 408007020 408007020 408007020
901020000 901020000 901020000 901020000
840300000 840300000 840300000 840300000
000100080 000100080 000100080 000100080
Solution Failed Solution Solution
786945312 783965214 783965214 783965214
519263457 219843657 219843657 219843657
324871869 654271839 654271839 654271839
165482973 165482973 165482973 165482973
237619548 327619548 327619548 327619548
498537126 498357621 498537126 498537126
951728634 931728465 931728465 931728465
842356791 846356791 842356791 842356791
673194285 572194382 576194382 576194382

105

Sudoku Problem Sudoku Problem Sudoku Problem Sudoku Problem
000502900 000502900 000502900 000502900
000040000 000040000 000040000 000040000
106000305 106000305 106000305 106000305
000251008 000251008 000251008 000251008
070408030 070408030 070408030 070408030
800000001 800000001 800000001 800000001
308000104 308000104 308000104 308000104
000020000 000020000 000020000 000020000
005104800 005104800 005104800 005104800
Solution Failed Solution Solution
437512986 437512986 437512986 437512986
589346217 589346217 589346217 589346217
126789345 126789345 126789345 126789345
643251798 643251798 643251798 643251798
971468532 971468532 971468532 971468532
852973461 852000001 852937461 852937461
398695174 308000104 398675124 398675124
214827653 000020000 714823659 714823659
765134829 005104800 265194873 265194873

106

